REGULATIONS, COURSE STRUCTURE AND SYLLABUS

(Aligned with AICTE Model Curriculum & APSCHE Curriculum)

SITE 21 REGULATIONS

For

B.Tech.

Mechanical Engineering

With effective from the Academic Year 2021-2022

B.Tech. Regulations

1.1 Short title and Commencement

The regulations listed under this head are common for all degree level under graduate programs (B.Tech.) offered by the college with effect from the academic year 2021-22 and they are called as "SITE21" regulations.

The regulations here under are subject to amendments as may be made by the Academic Council of the college from time to time, keeping the recommendations of the Board of Studies in view. Any or all such amendments will be effective from such date and to such batches of candidates including those already undergoing the program, as may be decided by the Academic Council.

1.2. Definitions

- a. "Commission" means University Grants Commission(UGC)
- b. "Council" means All India Council for Technical Education(AICTE)
- c. "University" Means Jawaharlal Nehru Technological University Kakinada(JNTUK)
- d. "College" means Sasi Institute of Technology & Engineering, Tadepalligudem.
- e. "Program" Means any combination of courses and /or requirements leading to award of a degree
- f. "Course" Means a subject either theory or practical identified by its course title and code number and which is normally studied in asemester.
- g. For example, (ELECTRONC DEVICES) is a course offered at third semester of B.Tech (ECT) and its code is (21ETETT3030)
- h. "Degree" means an academic degree conferred by the university upon those who complete the undergraduate curriculum
- i. "Regular Student" means student enrolled into the four year programme in the firstyear
- j. "Lateral entry Students" Means student enrolled into the four year programme in the secondyear

1.3. Academic Programs

1.3.1. Nomenclature of Programs

The nomenclature and its abbreviation given below shall continue to be used for the degree programs under the University, as required by the Council and Commission. The name of specialization shall be indicated in brackets after the abbreviation. For e.g. UG engineering degree in Mechanical Engineering program is abbreviated as B.Tech. (ME). Bachelor of Technology (B.Tech.) degree program offered in:

- 1. Artificial Intelligence & Machine Learning(AIM)
- 2. Civil Engineering(CE)
- 3. Computer Science and Engineering(Artificial Intelligence and Machine learning)-CSM
- 4. Computer Science and Engineering (IoT and Cyber Security including Block Chain Technology) (CIS)
- 5. Computer Science and Engineering(Data Science)-CSD
- 6. Computer Science and Engineering(CSE)
- 7. Computer Science and Technology(CST)
- 8. Electronics and Communication Engineering(ECE)
- 9. Electronics and Communication Technology(ECT)
- 10. Electrical and Electronics Engineering(EEE)
- 11. Information Technology(IT)
- 12. Mechanical Engineering(ME)

- Curriculum framework is important in setting the right direction for a Degree program

as it takes into account the type and quantum of knowledge necessary to be acquired by a student to qualify for a award in his/her chosen branch or specialization.

- Besides, this also helps in assigning the credits for each course, sequencing the courses semester-wise and finally arriving at the total number of courses to be studied and the total number of credits to be earned by a student to fulfill the requirements for conferment of degree.
- Each theory course shall consist of five units.

1.3.2. Curriculum Structure

The curriculum structure is designed in such a way that it facilitates the courses required to attain the expected knowledge, skills and attitude by the time of their graduation as per the needs of the stakeholders. The curriculum structure consists of various course categories (as described in 1.6.3 to 1.6.9) to cover the depth and breadth required for the program and for the attainment of program outcomes of the corresponding program. Each Programme of study will be designed to have 40-45 theory courses and 16-18 laboratory courses. The distribution and types of courses offered from the above is indicated in the following table 3.

1.3.3. Induction Program

The Induction Program for two weeks is designed to make the newly joined students feel comfortable, sensitize them towards exploring their academic interests and activities, reducing competition and making them work for excellence, promote bonding within them, build relations between teachers and students and building of character. Induction program covers

Physical activity Creative arts Universal human values Literary and Proficiency modules Lectures by Eminent peoples

1.4Admission Criteria

The eligibility criteria for admission into UG engineering programs are as per the norms approved by government of Andhra Pradesh from time to time. The sanctioned seats in each program in the college are classified into CATEGORY-A and CATEGORY-B at first year level and Lateral Entry at second year level.

- **CATEGORY A Seats:** These seats will be filled as per the norms approved by the Government of Andhra Pradesh.
- **CATEGORY B Seats:** These seats will be filled by the College as per the norms approved by the Government of Andhra Pradesh.
- **CATEGORY Lateral Entry Seats** : Lateralentry candidates shall be admitted into the Third semester directly as per the norms approved by government of Andhra Pradesh. The percentages of Category-A, Category-B and Lateral Entry Seats are decided time to time by the Government of Andhra Pradesh.

2. Award of B. Tech. Degree

- a) A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:
 - i. A student shall be declared eligible for the award of B. Tech Degree, if he pursues a course of study in not less than four and not more than eight academic years. After eight academic years from the year of their admission, he/she shall forfeit their seat in B.Tech course and their admission stands cancelled.
 - ii. The candidate shall register for 160 credits and secure all the 160 credits.
- b) The medium of instruction for the entire under graduate programmer in Engineering &Technology will be in <u>English</u> only.

3. Programme Pattern:

- a) Total duration of the of B. Tech (Regular) Programme is four academic years
- b) Each Academic year of study is divided into Two Semesters.
- c) Minimum number of instruction days in each semester is 90.
- d) Grade points, based on percentage of marks awarded for each course will form the basis for calculation of SGPA (Semester Grade Point Average) and CGPA (Cumulative Grade Point Average).
- e) The total credits for the Programme is 160.
- f) Three week induction program is mandatory for all first year UG students and shall be conducted as per AICTE/UGC/APSCHE guidelines.
- g) Student is introduced to "Choice Based Credit System (CBCS)".
- h) A pool of interdisciplinary and job-oriented mandatory skill courses which are relevant to the industry are integrated into the curriculum of concerned branch of engineering (total five skill courses: two basic level skill courses, one on soft skills and other two on advanced level skill courses)
- i) A student has to register for all courses in a semester.
- j) All the registered credits will be considered for the calculation of final CGPA.
- k) Each semester has 'Continuous Internal Evaluation (CIE)' and 'Semester End Examination (SEE)'.Choice Based Credit System (CBCS) and Credit Based Semester System (CBSS) as indicated by UGC and course structure as suggested by AICTE are followed.
- A 10 months industry/field mandatory internship, both industry and social, during the summer vacation and also in the final semester to acquire the skills required for job and make engineering graduates to connect with the needs of the industry and society at large.
- m) All the students shall be mandatorily registered for NCC, NSS activities and Community Service Project as per the Government and University norms.
- n) Each college shall assign a faculty advisor/mentor after admission to each student or group of students from same department to provide guidance in courses registration / career growth/placements/opportunities for higher studies/ GATE / other competitive exams etc.

4. Registration for Courses:

- a) In each semester a student shall mandatorily register courses which he/she wishes to pursue within a week from the starting of the class work with the advice of Head of the Department and mentor of the student of the concerned department of the college.
- b) If any student wishes to withdraw the registration of the course, he/she shall submit a letter to the Principal of the college through the Head of the Department and mentor within fifteen days.
- c) The concerned college shall thoroughly verify and upload the data/courses registered by each student in the university examination center within 20 days. The Principal of the concerned college shall ensure that there no wrong registration courses by the student. The university registration portal will be closed after 20 days.
- **5.** (a) Award of B. Tech. Degree: A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:
- i. A student shall be declared eligible for award of the B. Tech Degree, if he pursues a course of study in not less than four and not more than eight academic years. After eight academic years from the year of their admission, he/she shall **forfeit** their seat in B. Tech course and their admission stands cancelled.
- ii. The student shall register for 160 credits and must secure all the 160 credits.
- iii. All students shall mandatorily register for the courses like Environmental Sciences,

Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc., shall be included in the curriculum as non-credit mandatory courses. Environmental Sciences is to be offered compulsorily as mandatory course for all branches. A student has to secure at least 40% of the marks allotted in the internal evaluation for passing the course and shall maintain 75% of attendance in the subject.

- iv. All students shall mandatorily register for NCC/NSS activities and will be required to participate in an activity specified by NSS officer during second and third semesters. Grade shall be awarded as Satisfactory or Unsatisfactory in the mark sheet on the basis of participation, attendance, performance and behavior. If a student gets an unsatisfactory Grade, he/she shall repeat the above activity in the subsequent years, in order to complete the degree requirements.
- v. Credits are defined as per AICTE norms.

(b) Award of B. Tech. (Honor):

- Students of a Department/Discipline are eligible to opt for Honors Programme offered by the same Department/Discipline
- A student shall be permitted to register for Honors program at the beginning of 4 th semester provided that the student must have acquired a minimum of 8.0 SGPA upto the end of 2 nd semester without any backlogs. In case of the declaration of the 3rd semester results after the commencement of the 4th semester and if a student fails to score the required minimum of 8 SGPA, his/her registration for Honors Programme stands cancelled and he/she shall continue with the regular Programme.
- Students can select the additional and advanced courses from their respective branch in which they are pursuing the degree and get an honors degree in the same. e.g. If a Mechanical Engineering student completes the selected advanced courses from same branch under this scheme, he/she will be awarded B.Tech. (Honors) in Mechanical Engineering.
- In addition to fulfilling all the requisites of a Regular B.Tech Programme, a student shall earn 20 additional credits to be eligible for the award of B. Tech (Honors) degree. This is in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline (i.e. 160 credits).
- Of the 20 additional Credits to be acquired, 16 credits shall be earned by undergoing specified courses listed as pools, with four courses, each carrying 4 credits. The remaining 4 credits must be acquired through two MOOCs, which shall be domain specific, each with 2 credits and with a minimum duration of 8/12weeks as recommended by the Board of studies.
- It is the responsibility of the student to acquire/complete prerequisite before taking the respective course. The courses offered in each pool shall be domain specific courses and advanced courses
- The concerned BoS shall decide on the minimum enrolments for offering Honors program by the department. If minimum enrolments criteria are not met then the students shall be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department in consultation with BoS.
- Each pool can have theory as well as laboratory courses. If a course comes with a lab component, that component has to be cleared separately. The concerned BoS shall 16 explore the possibility of introducing virtual labs for such courses with lab component.
- MOOC courses must be of minimum 8 weeks in duration. Attendance will not be monitored for MOOC courses. Students have to acquire a certificate from the agencies approved by the BOS with grading or marks or pass/fail in order to earn 4 credits. If the MOOC course is a pass/fail course without any grades, the grade to be assigned will be as decided by the university/academic council.

- The concerned BoS shall also consider courses listed under professional electives of the respective B. Tech programs for the requirements of B. Tech (Honors). However, a student shall be permitted to choose only those courses that he/she has not studied in any form during the Programme.
- If a student drops or is terminated from the Honors program, the additional credits so far earned cannot be converted into free or core electives; they will remain extra. These additional courses will find mention in the transcript (but not in the degree certificate). In such cases, the student may choose between the actual grade or a "pass (P)" grade and also choose to omit the mention of the course as for the following: All the courses done under the dropped Minors will be shown in the transcript. None of the courses done under the dropped Minor will be shown in the transcript.
- In case a student fails to meet the CGPA requirement for Degree with Honors at any point after registration, he/she will be dropped from the list of students eligible for Degree with Honors and they will receive regular B.Tech degree only. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- Honors must be completed simultaneously with a major degree program. A student cannot earn Honors after he/she has already earned bachelor's degree.

(c) Award of B. Tech. (Minors):

- a)Students who are desirous of pursuing their special interest areas other than the chosen discipline of Engineering may opt for additional courses in minor specialization groups offered by a department other than their parent department. For example, If Mechanical Engineering student selects subjects from Civil Engineering under this scheme, he/she will get Major degree of Mechanical Engineering with minor degree of Civil Engineering b) Student can also opt for Industry relevant tracks of any branch to obtain the Minor Degree, for example, a B.Tech Mechanical student can opt for the industry relevant tracks like Data Mining track, IOT track, Machine learning track etc.
- The BOS concerned shall identify as many tracks as possible in the areas of emerging technologies and industrial relevance / demand. For example, the minor tracks can be the fundamental courses in CSE, ECE, EEE, CE, ME etc or industry tracks such as Artificial Intelligence (AI), Machine Learning (ML), Data Science (DS), Robotics, Electric vehicles, Robotics, VLSI etc.
- The list of disciplines/branches eligible to opt for a particular industry relevant minor specialization shall be clearly mentioned by the respective BoS.
- There shall be no limit on the number of programs offered under Minor. The University/Institution can offer minor programs in emerging technologies based on expertise in the respective departments or can explore the possibility of collaborating with the relevant industries/agencies in offering the program.
- The concerned BoS shall decide on the minimum enrolments for offering Minor program by the department. If a minimum enrolments criterion is not met, then the students may be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department in consultation with BoS.
- A student shall be permitted to register for Minors program at the beginning of 4th semester subject to a maximum of two additional courses per semester, provided that the student must have acquired 8 SGPA (Semester Grade point average) upto the end of 2nd semester without any history of backlogs. It is expected that the 3rd semester results may be announced after the commencement of the 4th semester. If a student fails to acquire 8 SGPA upto 3rd semester or failed in any of the courses, his registration for Minors program shall stand cancelled. An SGPA of 8 has to be maintained in the subsequent semesters without any backlog in order to keep the Minors registration active.

- A student shall earn additional 20 credits in the specified area to be eligible for the award of B. Tech degree with Minor. This is in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline (i.e. 160 credits).
- Out of the 20 Credits, 16 credits shall be earned by undergoing specified courses listed by the concerned BoS along with prerequisites. It is the responsibility of the student to acquire/complete prerequisite before taking the respective course. If a course comes with a lab component, that component has to be cleared separately. A student shall be permitted to choose only those courses that he/she has not studied in any form during the Programme.
- In addition to the 16 credits, students must pursue at least 2 courses through MOOCs. The courses must be of minimum 8 weeks in duration. Attendance will not be monitored for MOOC courses. Student has to acquire a certificate from the agencies approved by the BOS with grading or marks or pass/fail in order to earn 4 credits. If the MOOC course is a pass/fail course without any grades, the grade to be assigned as decided by the university/academic council.
- Student can opt for the Industry relevant minor specialization as approved by the concerned departmental BoS. Student can opt the courses from Skill Development Corporation (APSSDC) or can opt the courses from an external agency recommended and approved by concerned BOS and should produce course completion certificate. The Board of studies of the concerned discipline of Engineering shall review such courses being offered by eligible external agencies and prepare a fresh list every year incorporating latest skills based on industrial demand.
- A committee should be formed at the level of College/Universities/department to evaluate the grades/marks given by external agencies to a student which are approved by concerned BoS. Upon completion of courses the departmental committee should convert the obtained grades/marks to the maximum marks assigned to that course. The controller of examinations can take a decision on such conversions and may give appropriate grades.
- If a student drops (or terminated) from the Minor program, they cannot convert the earned credits into free or core electives; they will remain extra. These additional courses will find mention in the transcript (but not in the degree certificate). In such cases, the student may choose between the actual grade or a "pass (P)" grade and also choose to omit the mention of the course as for the following: All the courses done under the dropped Minors will be shown in the transcript.
- In case a student fails to meet the CGPA requirement for B.Tech degree with Minor at any point after registration, he/she will be dropped from the list of students eligible for degree with Minors and they will receive B. Tech degree only. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- Minor must be completed simultaneously with a major degree program. A student cannot earn the Minor after he/she has already earned bachelor's degree.

6. Attendance Requirements

- a) A student is eligible to write the University examinations if he acquires a minimum of 40% in each subject and 75% of attendance in aggregate of all the subjects.
- b) Condonation of shortage of attendance in aggregate up to 10% (65% and above, and below 75%) may be granted by the College Academic Committee. However, this condonation concession is applicable only to any two semesters during the entire programme.
- c) Shortage of Attendance below 65% in aggregate shall not be condoned.
- d) A student who is short of attendance in a semester may seek re-admission into that

semester when offered within 4 weeks from the date of commencement of class work.

- e) Students whose shortage of attendance is not condoned in any semester are not eligible to write their end semester examination of that class.
- f) A stipulated fee of Rs. 1000/- in the concerned semester shall be payable towards condonation of shortage of attendance. Students availing condonation on medical ground shall produce a medical certificate issued by the competitive authority.
- g) A student will be promoted to the next semester if he satisfies the (i) attendance requirement of the present semester and (ii) minimum required credits.
- h) If any candidate fulfills the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.
- i) For induction programme attendance shall be maintained as per AICTE norms.
- j) For non-credit mandatory courses the students shall maintain the attendance similar to credit courses

7. Evaluation-Distribution and Weightage of marks

- i. Paper setting and evaluation of the answer scripts shall be done as per the procedures laid down by the University Examination section from time to time.
- ii. To maintain the quality, external examiners and question paper setters shall be selected from reputed institutes like IISc, IITs, IIITs, IISERs, NITs and Universities.
- iii. For non-credit mandatory courses, like Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge, the student has to secure 40% of the marks allotted in the internal evaluation for passing the course. No marks or letter grade shall be allotted for all mandatory non-credit courses.
- iv. A student is deemed to have satisfied the minimum academic requirements if he has earned the credits allotted to each theory/practical design/drawing subject/ project etc by securing not less than 35% of marks in the end semester exam and minimum 40% of marks in the sum total of the internal marks and end semester examination marks together.

S. No.	Components	Internal	External	Total
1	Theory	30	70	100
2	Engineering Graphics/Design/Drawing	30	70	100
3	Practical	15	35	50
4	Mini Project/Internship/Industrial Training/ Skill Development programs/Research Project	-	50	50
5	Project Work	60	140	200

v. **Distribution and Weightage of marks:** The assessment of the student's performance in each course will be as per the details given:

vi. Continuous Internal Theory Evaluation:

- a) For theory subjects, during a semester, there shall be two mid-term examinations. Each mid-term examination consists of (i) one online objective examination (20 multiple choice questions) for 10 marks for a duration of 20 minutes (ii) one descriptive examination (3 full questions for 5 marks each) for 15 marks for a duration of 90 minutes and (iii) one assignment for 05 marks. All the internal exams shall be conducted as per university norms from first 50% of the syllabi.
- b) In the similar lines, the second online, descriptive examinations assignment shall be conducted on the rest of the 50% syllabus.
- c) The total marks secured by the student in each mid-term examination are evaluated for 30 marks. The first mid marks (Mid-1) consisting of marks of online objective examination, descriptive examination and assignment shall be submitted to the University examination

section within one week after completion of first mid examination.

- d) The mid marks submitted to the University examination section shall be displayed in the concerned college notice boards for the benefit of the students.
- e) If any discrepancy found in the submitted Mid-1 marks, it shall be brought to the notice of university examination section within one week from the submission.
- f) Second mid marks (Mid-2) consisting of marks of online objective examination, descriptive examination and assignment shall also be submitted to University examination section within one week after completion of second mid examination and it shall be displayed in the notice boards. If any discrepancy found in the submitted mid-2 marks, it shall be brought to the notice of university examination section within one week from the submission.
- g) Internal marks can be calculated with 80% weightage for better of the two mids and 20% Weightage for other mid exam.
 - a. Example: **Mid-1 marks** = Marks secured in
 - b. (Online examination-1 + descriptive examination-1 +one assignment-1)
 - c. **Mid-2 marks** = Marks secured in
 - d. (Online examination-2+descriptive examination-2+one assignment-2)
 - e. **Final internal Marks** = (Best of (Mid-1/Mid-2) marks x 0.8 + Least of (Mid-1/Mid-2) marks x 0.2)
- h) With the above criteria, university examination section will send mid marks of all subjects in consolidated form to all the concerned colleges and same shall be displayed in the concerned college notice boards. If any discrepancy found, it shall be brought to the notice of university examination section through proper channel within one week with all proofs. Discrepancies brought after the given deadline will not be entertained under any circumstances.

vii. Semester End Theory Examinations Evaluation:

- a) The semester end examinations will be conducted university examination section for 70 marks consists of five questions carrying 14 marks each. Each of these questions is from one unit and may contain sub-questions. For each question there will be an "either" "or" choice, which means that there will be two questions from each unit and the student should answer either of the two questions.
- b) For practical subjects there shall be continuous evaluation during the semester for 15 internal marks and 35 end examination marks. The internal 15 marks shall be awarded as follows: day to day work 5 marks, Record-5 marks and the remaining 5 marks to be awarded by conducting an internal laboratory test. The end examination shall be conducted by the teacher concerned and external examiner appointed.
- c) For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 30 marks for internal evaluation (15 marks for continuous Assessment (day-to-day work) and 15 marks for internal tests) and 70 marks for end examination. There shall be two internal tests in a Semester for 15 marks each and final marks can be calculated with 80% weightage for better of the two tests and 20% weightage for other test and these are to be added to the marks obtained in day to day work.

Evaluation of the summer internships:

- Two summer internships each with a minimum of six weeks duration, done at the end of second and third years, respectively are mandatory. The internship can be done by the students at local industries, Govt. Organizations, construction agencies, Industries, Hydel and thermal power projects and also in software MNCs.
- Evaluation of the summer internships shall be through the departmental committee. A student will be required to submit a summer internship report to the concerned

department and appear for an oral presentation before the departmental committee. The report and the oral presentation shall carry 40% and 60% weightages respectively.

- In the final semester, the student should mandatorily undergo internship and parallelly he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner
- The College shall facilitate and monitor the student internship programs. Completion of internships is mandatory, if any student fails to complete internship, he/she will not be eligible for the award of degree. In such cases, the student shall repeat and complete the internship.
- It shall be evaluated for 50 external marks at the end of the semester. There shall be no internal marks for Summer Internship. A student shall secure minimum 40% of marks for successful completion.

d) Curricular Framework for Skill oriented:

- The job oriented skill courses may be registered at the college or at any accredited external agency. A student shall submit a record/report on the on the list skills learned. If the student completes job oriented skill course at external agency, a certificate from the agency shall be included in the report. The course will be evaluated at the end of the semester for 50 marks (record: 15 marks and viva-voce: 35 marks) along with laboratory end examinations in the presence of external and internal examiner (course instructor or mentor). There are no internal marks for the job oriented skill courses.
- For skill oriented/skill advanced course, one theory and 2 practical hours or two theory hours may be allotted as per the decision of concerned BOS.
- Out of the five skill courses two shall be skill-oriented courses from the same domain and shall be completed in second year. Of the remaining 3 skill courses, one shall be necessarily be a soft skill course and the remaining 2 shall be skill-advanced courses either from the same domain or Job oriented skill courses, which can be of inter disciplinary nature.
- A pool of interdisciplinary job-oriented skill courses shall be designed by a common Board of studies by the participating departments/disciplines and the syllabus along with the pre requisites shall be prepared for each of the laboratory infrastructure requirements. The list of such courses shall be included in the curriculum structure of each branch of Engineering, so as to enable the student to choose from the list
- The student shall be given an option to choose either the skill courses being offered by the college or to choose a certificate course being offered by industries/Professional bodies/APSSDC or any other accredited bodies as approved by the concerned BoS
- The Board of studies of the concerned discipline of Engineering shall review the skill advanced courses being offered by eligible external agencies and prepare a fresh list every year incorporating latest courses based on industrial demand
- If a student chooses to take a Certificate Course offered by industries/Professional bodies/APSSDC or any other accredited bodies, in lieu of the skill advanced course offered by the Department, the credits shall be awarded to the student upon producing the Course Completion Certificate from the agency/professional bodies as approved by the Board of studies.
- If a student prefers to take a certificate course offered by external agency, the department shall mark attendance of the student for the remaining courses in that semester excluding the skill course in all the calculations of mandatory attendance requirements upon producing a valid certificate as approved by the concerned Board of Studies, the student is deemed to have fulfilled the attendance requirement of the course

and acquire the credits assigned to the course.

- A committee shall be formed at the level of the college to evaluate the grades/marks given for a course by external agencies and convert to the equivalent marks/grades. The recommended conversions and appropriate grades/marks are to be approved by the University/Academic Council.
- e) Mandatory Course (M.C): Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc non-credit (zero credits) mandatory courses. Environmental Sciences shall be offered compulsorily as mandatory course for all branches. A minimum of 75% attendance is mandatory in these subjects. There shall be an external examination for 70 marks and it shall be conducted by the college internally. Two internal examinations shall be conducted for 30 marks and a student has to secure at least 40% of the marks for passing the course. There is no online internal exam for mandatory courses. No marks or letter grade shall be printed in the transcripts for all mandatory non-credit courses, but only Completed (Y)/Not-completed (N) will be specified.
- f) Procedure for Conduct and Evaluation of MOOC: There shall be a Discipline Centric Elective Course through Massive Open Online Course (MOOC) as Program Elective course. The student shall register for the course (Minimum of 12 weeks) offered by SWAYAM/NPTEL through online with the approval of Head of the Department. The Head of the Department shall appoint one mentor for each of the MOOC subjects offered. The student needs to register the course in the SWAYAM/NPTEL portal. During the course, the mentor monitors the student's assignment submissions given by SWAYAM/NPTEL. The student needs to submit all the assignments given and needs to take final exam at the proctor center. The student needs to earn a certificate by passing the exam. The student will be awarded the credits given in curriculum only by submission of the certificate. In case if student does not pass subjects registered through SWAYAM/NPTEL, the same or alternative equivalent subject may be registered again through SWAYAM/NPTEL in the next semester with the recommendation of HOD and shall be pass.

g) Major Project (Project - Project work, seminar and internship in industry):

In the final semester, the student should mandatorily register and undergo internship and in parallel he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner.

Evaluation: The total marks for project work 200 marks and distribution shall be 60 marks for internal and 140 marks for external evaluation. The supervisor assesses the student for 30 marks (Report: 15 marks, Seminar: 15 marks). At the end of the semester, all projects shall be showcased at the department for the benefit of all students and staff and the same is to be evaluated by the departmental Project Review Committee consisting of supervisor, a senior faculty and HOD for 30 marks. The external evaluation of Project Work is a Viva-Voce Examination conducted in the presence of internal examiner and external examiner and is evaluated for 140 marks.

8 **Results Declaration:**

- i. Before results declaration, an academic council meeting shall be conducted and results shall be placed before the academic council for approval.
- ii. With the approval of academic council, the results shall be submitted to the University to get the Approval from Honorable Vice-Chancellor.
- iii. The University may normalize the result, if required, before declaration of the result (Guidelines for normalization will be provided separately)

- iv. A copy of approved results in a CD shall be submitted to the University examination Center.
- 9. Academic Audit: Academic audit in each semester will be conducted as per norms.
- **10. Recounting or Re-evaluation of Marks in the End Semester Examination:** A student can request for recounting of revaluation of his/her answer book on payment of a prescribed fee as per norms.
- **11. Supplementary Examinations:** A student who has failed to secure the required credits can appear for a supplementary examination, as per the schedule announced by the University.
- **12. Malpractices in Examinations:** Disciplinary action shall be taken in case of malpractices during Mid/End examinations as per the rules framed by the University.
- **13. Promotion Rules:** The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in <u>item no.5 for</u> promotion to higher classes
 - a) A student shall be promoted from first year to second year if he fulfills the minimum attendance requirement as per University norm.
 - b) A student will be promoted from II year to III year if he fulfills the academic requirement of 40% of credits up to either II year I-Semester or II year II-Semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in II year II semester.
 - c) A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

14. Course Pattern

- a) The entire course of study is for four academic years; all years are on semester pattern.
- b) A student eligible to appear for the end semester examination in a subject, but absent from it or has failed in the end semester examination, may write the exam in that subject when conducted next.
- c) When a student is detained for lack of credits / shortage of attendance, he may be readmitted into the same semester/year in which he has been detained. However, the academic regulations under which he was first admitted shall continue to be applicable to him.

15. Earning of Credit:

A student shall be considered to have completed a course successfully and earned the credits if he/she secures an acceptable letter grade in the range A+ to E as given below. Letter grade 'F' in any course implies failure of the student in that course and no credits earned. Absent is also treated as no credits earned. For project same % percentages will be followed for grading.

Marks Range Max:100	Marks range Max:50	Level	Letter Grade	Grade point
≥ 90	\geq 45	Outstanding	A+	10
≥ 80 to ≤ 89	\geq 40 to <44	Excellent	А	9
\geq 70 to <79	\geq 35 to <39	Very Good	В	8
≥60 to <69	\geq 30 to <34	Good	C	7
\geq 50 to <59	≥ 25 to ≤ 29	Fair	D	6
≥40 to <49	≥ 20 to ≤ 24	Satisfactory	E	5
<40	<20	Fail	F	0
-		Absent	AB	0

16. Award of Class:

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	CGPA to be secured	Remarks
First Class with Distinction	≥7.75 (Without any supplementary appearance)	From the
First Class	≥ 6.75	secured
Second Class	\geq 5.75 to < 6.75	from
Pass Class	\geq 5.00 to < 5.75	160 Credits

17. Minimum Instruction Days:

The minimum instruction days for each semester shall be 90 working days. There shall be no branch transfers after the completion of the admission process. There shall be no transfer from one college/stream to another within the Constituent Colleges and Units of Jawaharlal Nehru Technological University Kakinada.

18. Withholding of Results:

If the student is involved in indiscipline/malpractices/court cases, the result of the student will be withheld.

19. Transitory Regulations

- a) Discontinued or detained candidates are eligible for re-admission as and when next offered.
- b) The re-admitted candidate will be governed by the rules & regulations under which the candidate has been admitted.
- c) In case of transferred students from other Universities, credits shall be transferred to JNTUK as per the academic regulations and course structure of JNTUK.
- d) The students seeking transfer to colleges affiliated to JNTUK from various other Universities / Institutions haveto obtain the credits of any equivalent subjects as prescribed by JNTUK. In addition, the transferred candidates have to pass the failed subjects at the earlier Institute with already obtained internal/sessional marks to be conducted by JNTUK.

20. Gap – Year:

Gap Year concept of Student Entrepreneur in Residence shall be introduced and outstanding students who wish to pursue entrepreneurship are allowed to take a break of one year at any time after I/II/III year to pursue entrepreneurship full time. This period shall be counted for the maximum time for graduation. An evaluation committee at university level shall be constituted to evaluate the proposal submitted by the student and the committee shall decide on permitting the student for availing the Gap Year.

21. General:

- a) Wherever the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".
- b) The academic regulation should be read as a whole for the purpose of any interpretation.
- c) In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.
- d) The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.

ACADEMIC REGULATIONS (SITE21) FOR B.Tech (LATERAL ENTRY SCHEME)

Applicable for the students admitted into II year B. Tech. from the Academic Year 2022-23 onwards

1. Award of B. Tech. Degree

A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:

a) A student shall be declared eligible for the award of the B. Tech Degree, if he pursues a course of study in not less than three academic years and not more than six academic years. After six academic years from the year of their admission, he/she shall forfeit their seat in B. Tech course and their admission stands cancelled.

b) The candidate shall register for 121 credits and secure all the 122 credits.

- 2. The attendance regulations of B. Tech. (Regular) shall be applicable to B.Tech (lateral entry)
- 3. **Promotion Rules:** A student shall be promoted from second year to third year if he fulfills the minimum attendance requirement.

A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

4. Award of Class

After a student has satisfied the requirement prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	CGPA to be secured	Remarks
First Class with Distinction	\geq 7.75 (Without any supplementary appearance)	From the CGPA
First Class	≥ 6.75	Credits from
Second Class	\geq 5.75 to < 6.75	II Year to IV Year
Pass Class	\geq 5.00 to < 5.75	

The Grades secured, Grade points and Credits obtained will be shown separately in the memorandum of marks.

5. All the other regulations as applicable to **B. Tech. 4-year degree course (Regular) will hold** good for **B. Tech. (Lateral Entry Scheme**

COMMUNITY SERVICE PROJECT

Introduction

- 1. Community Service Project is an experiential learning strategy that integrates meaningful community service with instruction, participation, learning and community development
- 2. Community Service Project involves students in community development and service activities and applies the experience to personal and academic development.
- 3. Community Service Project is meant to link the community with the college for mutual benefit. The community will be benefited with the focused contribution of the college students for the village/ local development. The college finds an opportunity to develop social sensibility and responsibility among students and also emerge as a socially responsible institution.

Objective

Community Service Project should be an integral part of the curriculum, as an alternative to the 2 months of Summer Internships / Apprenticeships / On the Job Training, whenever there is an exigency when students cannot pursue their summer internships. The specific objectives are;

- 1. To sensitize the students to the living conditions of the people who are around them,
- 2. To help students to realize the stark realities of the society.
- 3. To bring about an attitudinal change in the students and help them to develop societal consciousness, sensibility, responsibility and accountability
- 4. To make students aware of their inner strength and help them to find new /out of box solutions to the social problems.
- 5. To make students socially responsible citizens who are sensitive to the needs of the disadvantaged sections.
- 6. To help students to initiate developmental activities in the community in coordination with public and government authorities.
- 7. To develop a holistic life perspective among the students by making them study culture, traditions, habits, lifestyles, resource utilization, wastages and its management, social problems, public administration system and the roles and responsibilities of different persons across different social systems.

Implementation of Community Service Project

- 1. Every student should put in a minimum of **180 hours** for the Community Service Project during the summer vacation
- 2. Each class/section should be assigned with a mentor.
- 3. Specific Departments could concentrate on their major areas of concern. For example, Dept. of Computer Science can take up activities related to Computer Literacy to different sections of people like youth, women, house-wives, etc.
- 4. A log book has to be maintained by each of the student, where the activities undertaken/involved to be recorded. The log book has to be countersigned by the concerned mentor/faculty in charge.
- 5. Evaluation to be done based on the active participation of the student and grade could be awarded by the mentor/faculty member.
- 6. The final evaluation to be reflected in the grade memo of the student.
- 7. The Community Service Project should be different from the regular programs of NSS/NCC/Green Corps/Red Ribbon Club, etc.
- 8. Minor project report should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the principal of the college.
- 9. Award of marks shall be made as per the guidelines of Internship/apprentice/ on the job training

Procedure

- 1. A group of students or even a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, so as to enable them to commute from their residence and return back by evening or so.
- 2. The Community Service Project is a twofold one
 - a) First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. Or it can even be a general survey, incorporating all the different areas. A common survey format could be designed. This should not be viewed as a duplication of work by the Village or Ward volunteers, rather, it could be another primary source of data.
 - b) Secondly, the student/s could take up a social activity, concerning their domain or

subject area. The different areas, could be like -

- Agriculture
- Health
- Marketing and Cooperation
- Animal Husbandry
- Horticulture
- Fisheries
- Sericulture
- Revenue and Survey
- Natural Disaster Management
- Irrigation
- Law & Order
- Excise and Prohibition
- Mines and Geology
- Energy
- Internet
- Free Electricity
- Drinking Water

EXPECTED OUTCOMES BENEFITS OF COMMUNITY SERVICE PROJECT TO STUDENTS

Learning Outcomes

- 1. Positive impact on students' academic learning.
- 2. Improves students' ability to apply what they have learned in "the real world".
- 3. Positive impact on academic outcomes such as demonstrated complexity of understanding, problem analysis, problem-solving, critical thinking, and cognitive development.
- 4. Improved ability to understand complexity and ambiguity.

Personal Outcomes

- 1. Greater sense of personal efficacy, personal identity, spiritual growth, and moral development.
- 2. Greater interpersonal development, particularly the ability to work well with others, and build leadership and communication skills

Social Outcomes

- 1. Reduced stereotypes and greater inter-cultural understanding
- 2. Improved social responsibility and citizenship skills
- 3. Greater involvement in community service after graduation

Career Development

- 1. Connections with professionals and community members for learning and career opportunities
- 2. Greater academic learning, leadership skills, and personal efficacy can lead to greater opportunity

Relationship with the Institution

- 1. Stronger relationships with faculty
- 2. Greater satisfaction with college
- 3. Improved graduation rates

BENEFITS OF COMMUNITY SERVICE PROJECT TO FACULTY MEMBERS

- 1. Satisfaction with the quality of student learning
- 2. New avenues for research and publication via new relationships between faculty and community
- 3. Providing networking opportunities with engaged faculty in other disciplines or institutions
- 4. A stronger commitment to one's research

BENEFITS OF COMMUNITY SERVICE PROJECT TO COLLEGES AND UNIVERSITIES

- 1. Improved institutional commitment
- 2. Improved student retention
- 3. Enhanced community relations

BENEFITS OF COMMUNITY SERVICE PROJECT TO COMMUNITY

- 1. Satisfaction with student participation
- 2. Valuable human resources needed to achieve community goals
- 3. New energy, enthusiasm and perspectives applied to community work
- 4. Enhanced community-university relations.

SUGGESTIVE LIST OF PROGRAMMES UNDER COMMUNITY SERVICE PROJECT

The following the recommended list of projects for engineering students. The lists are not exhaustive and open for additions, deletions and modifications. Colleges are expected to focus on specific local issues for this kind of projects. The students are expected to carry out these projects with involvement, commitment, responsibility and accountability. The mentors of a group of students should take the responsibility of motivating, facilitating, and guiding the students. They have to interact with local leadership and people and appraise the objectives and benefits of this kind of projects. The project reports shall be placed in the college website for reference. Systematic, Factual, methodical and honest reporting shall be ensured.

For Engineering Students

- 1. Water facilities and drinking water availability
- 2. Health and hygiene
- 3. Stress levels and coping mechanisms
- 4. Health intervention programs
- 5. Horticulture
- 6. Herbal plants
- 7. Botanical survey
- 8. Zoological survey
- 9. Marine products
- 10. Aqua culture
- 11. Inland fisheries
- 12. Animals and species
- 13. Nutrition
- 14. Traditional health care methods
- 15. Food habits
- 16. Air pollution
- 17. Water pollution
- 18. Plantation
- 19. Soil protection
- 20. Renewable energy
- 21. Plant diseases
- 22. Yoga awareness and practice
- 23. Health care awareness programs and their impact
- 24. Use of chemicals on fruits and vegetables
- 25. Organic farming
- 26. Crop rotation
- 27. Floury culture
- 28. Access to safe drinking water
- 29. Geographical survey
- 30. Geological survey
- 31. Sericulture
- 32. Study of species

- 33. Food adulteration
- 34. Incidence of Diabetes and other chronic diseases
- 35. Human genetics
- 36. Blood groups and blood levels
- 37. Internet Usage in Villages
- 38. Android Phone usage by different people
- 39. Utilization of free electricity to farmers and related issues
- 40. Gender ration in schooling level- observation.

Complementing the community service project, the students may be involved to take up some awareness campaigns on social issues/special groups. The suggested list of programs are;

Programs for School Children:

- 1. Reading Skill Programme (Reading Competition)
- 2. Preparation of Study Materials for the next class.
- 3. Personality / Leadership Development
- 4. Career Guidance for X class students
- 5. Screening Documentary and other educational films
- 6. Awareness Programme on Good Touch and Bad Touch (Sexual abuse)
- 7. Awareness Programme on Socially relevant themes.

Programs for Women Empowerment

- 1. Government Guidelines and Policy Guidelines
- 2. Women's' Rights
- 3. Domestic Violence
- 4. Prevention and Control of Cancer
- 5. Promotion of Social Entrepreneurship

General Camps

- 1. General Medical camps
- 2. Eye Camps
- 3. Dental Camps
- 4. Importance of protected drinking water
- 5. ODF awareness camp
- 6. Swatch Bharat
- 7. AIDS awareness camp
- 8. Anti-Plastic Awareness
- 9. Programs on Environment
- 10. Health and Hygiene
- 11. Hand wash programs
- 12. memoration and Celebration of important days

Programs for Youth Empowerment

- 1. Leadership
- 2. Anti-alcoholism and Drug addiction
- 3. Anti-tobacco
- 4. Awareness on Competitive Examinations
- 5. Personality Development

Common Programs

- 1. Awareness on RTI
- 2. Health intervention programs
- 3. Yoga
- 4. Tree plantation
- 5. Programs in consonance with the Govt. Departments like
 - i. Agriculture

- ii. Health
- iii. Marketing and Cooperation
- iv. Animal Husbandry
- v. Horticulture
- vi. Fisheries
- vii. Sericulture
- viii. Revenue and Survey
- ix. Natural Disaster Management
- x. Irrigation
- xi. Law & Order
- xii. Excise and Prohibition
- xiii. Mines and Geology
- xiv. Energy

Role of Students:

- 1. Students may not have the expertise to conduct all the programmes on their own. The students thencan play a facilitator role.
- 2. For conducting special camps like Health related, they will be coordinating with the Governmental agencies.
- 3. As and when required the College faculty themselves act as Resource Persons.
- 4. Students can work in close association with Non-Governmental Organizations like Lions Club, Rotary Club, etc or with any NGO actively working in that habitation.
- 5. And also, with the Governmental Departments. If the programme is rolled out, the District Administration could be roped in for the successful deployment of the programme.
- 6. An in-house training and induction programme could be arranged for the faculty and participating students, to expose them to the methodology of Service Learning.

Timeline for the Community Service Project Activity

Duration: 8 weeks

1. Preliminary Survey (One Week)

- a) A preliminary survey including the socio-economic conditions of the allotted habitation to be conducted.
- b) A survey form based on the type of habitation to be prepared before visiting the habitation with the help of social sciences faculty. (However, a template could be designed for different habitations, rural/urban.
- c) The Governmental agencies, like revenue administration, corporation and municipal authorities and village secretariats could be aligned for the survey.

2. Community Awareness Campaigns (Two Weeks)

Based on the survey and the specific requirements of the habitation, different awareness campaigns and programmes to be conducted, spread over two weeks of time. The list of activities suggested could be taken into consideration.

3. Community Immersion Programme (Four Weeks)

Along with the Community Awareness Programmes, the student batch can also work with any one of the below listed governmental agencies and work in tandem with them. This community involvement programme will involve the students in exposing themselves to the experiential learning about the community and its dynamics. Programmes could be in consonance with the Govt. Departments.

4. Community Exit Report (One Week)

During the last week of the Community Service Project, a detailed report of the outcome of the 8 weeks works to be drafted and a copy shall be submitted to the local administration. This report will be a basis for the next batch of students visiting that particular habitation.

The same report submitted to the teacher-mentor will be evaluated by the mentor and suitable marks are awarded for onward submission to the University.

Throughout the Community Service Project, a daily log-book need to be maintained by the students batch, which should be countersigned by the governmental agency representative and the teacher-mentor, who is required to periodically visit the students and guide them.

Course Numbering Scheme

The Course number code consists of 11alphabets. A typical course number code is illustrated in the followingFigure-1.

Mechanical Engineering (ME)

Figure 1: Course Numbering Scheme The department codes are in given in following table 1. Table 1: Department Codes

Department	Two-character code
Artificial Intelligence and Machine Learning	AM
Civil Engineering	CE
Electrical & Electronics Engineering	EE
Mechanical Engineering	ME
Electronics & Communications Engineering	EC
Electronics & Communications Technology	ET
Computer Science and Engineering (Artificial Intelligence and Machine Learning)	СА
Computer Science and Engineering (IoT and Cyber Security including Block Chain Technology)	CI
Computer Science and Engineering (Data Science)	CD
Computer Science and Engineering	CS
Computer Science and Technology	СТ
Information Technology	IT
Management Science	MS
Mathematics	MA
Physics	PH
Chemistry	СН
English	EG
Biology	BI
Common to All Branches	СМ

		No of Credits			
S. No.	Category	Suggested by AICTE	Suggested by APSCHE	Approved SITE-21	
1	Humanities and Social Sciences	12	10.5	10.5	
2	Basic Science Courses	25	21	21	
3	Engineering Science Courses	24	24	24	
4	Professional Core Courses	48	51	51	
5	Professional Elective Courses	18	15	15	
6	Open Elective Courses	18	12	12	
7	Project Work, Seminar and Internship	15	16.5	16.5	
8	Skill oriented Courses	_	10	10	
9	Mandatory Courses	_	-	_	
	Total Credits	160	160	160	

Table-2: Comparison of Suggested breakup of Credits AICTE, APSCHE and SITE Curriculum

Malpractice

DISCIPLINARY ACTION FOR MALPRACTICES/IMPROPER CONDUCT IN EXAMS

S.	Nature of Malpractices/Improper	Dunishmont
No.	conduct	i unisiment
	If the candidate:	
1. (a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in	Expulsion from the examination hall and cancellation of the performance in that subject only.
	the subject of the examination)	
1. (b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including

	which the candidate is appearing	practical examinations and
	which the culturate is appearing.	project work and shall not be
		project work and shall not be
		permitted to appear for the
		remaining examinations of the
		subjects of that
		Semester/year.The Hall Ticket of
		the candidate is to be cancelled
		and sent to the University.
3.	Impersonates any other candidate in	The candidate who has
	connection with the examination.	impersonated shall be expelled
		from examination hall The
		candidate is also debarred and
		forfeits the seat. The performance
		of the original condidate who has
		of the original candidate who has
		been impersonated, shall be
		cancelled in all the subjects of the
		examination (including practicals
		and project work) already
		appeared and shall not be allowed
		to appear for examinations of the
		remaining subjects of that
		semester/year. The candidate is
		also debarred for two consecutive
		semesters from class work and all
		Liniversity exeminations The
		University examinations. The
		continuation of the course by the
		candidate is subject to the
		academic regulations in
		connection with forfeiture of seat.
		If the imposter is an outsider, he
		will be handed over to the police
		and a case is registered against
		him.
4	Smuggles in the Answer book or	Expulsion from the examination
	additional sheet or takes out or arranges	hall and cancellation of
	to send out the question paper during the	performance in that subject and
	avamination or answer book or	all the other subject the
	examination of answer book of	an the other subjects the
	additional sheet, during or after the	candidate has already appeared
	examination.	including practical examinations
		and project work and shall not be
		permitted for the remaining
		examinations of the subjects of
		that semester/year. The candidate
		is also debarred for two
		consecutive semesters from class
		work and all University
		examinations The continuation
		of the course by the condidate is
		of the course by the candidate is
		subject to the academic
		regulations in connection with
		forfeiture of seat.

5.	Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks	Cancellation of the performance in that subject.
6.	Refuses to obey the orders of the Chief Superintendent/Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.
7.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the
		performance in that subject and

		all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of
		that semester/year. The candidate is also debarred and forfeits the
9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.
11.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.
12.	If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.	

MALPRACTICES

- The Principal shall refer the cases of malpractices in Continuous Evaluation and Semester-End Examinations, to Malpractice Enquiry Committee, constituted by him/her for the purpose. Such committee shall follow the approved scales of punishment. The Principal shall take necessary action, against the erring students based on the recommendations of the committee.
- Any action on the part of student at an examination trying to get undue advantage in the performance or trying to help another, or derive the same through unfair means is punishable according to the provisions contained hereunder. The involvement of the Staff, who are in charge of conducting examinations, valuing examination papers and preparing/keeping records of documents relating to the examinations in such acts (inclusive of providing incorrect or misleading information) that infringe upon the course of natural justice to one and all concerned at the examination shall be viewed seriously and recommended for award of appropriate punishment after thorough enquiry.

Ragging

Prohibition of ragging in educational institutions Act 26 of 1997 Salient Features

- Ragging within or outside any educational institution is prohibited.
- Ragging means doing an act which causes or is likely to cause Insult or Annoyance of Fear or Apprehension or Threat or Intimidation or outrage of modesty or Injury to a student.

Program Outcomes for an Engineering Graduates:

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

COURSE STRUCTURE

SITE-21 REGULATIONS

For Mechanical Engineering

> With effective from the Academic Year 2021-22

S. No.	СС	Course code	Course Title	L	Т	Р	С	
1	BSC		Engineering Mathematics – I	3	0	0	3	
		21CMMAT1010	(Calculus and Differential					
			Equations)					
2	BSC	21EEPHT1020	Engineering Physics	3	0	0	3	
3	BSC	21CMCHT1030	Engineering Chemistry	3	0	0	3	
4	ESC	01CMCST1040	Programming for Problem	3	0	0	3	
		21CMC511040	Solving					
5	ESC	21CMMEL1050	Engineering Graphics	2	0	2	3	
6	BSC	21EEPHL1060	Engineering Physics Lab	0	0	3	1.5	
7	BSC	21CMCHL1070	Engineering Chemistry Lab	0	0	3	1.5	
8	ESC	0101000	Programming for Problem	0	0	3	1.5	
		ZICMCSLIUOU	Solving Lab					
0	MC		Constitution of India,	0	0	0	0	
9	MC	21CMMSN1090	ProfessionalEthics &	4	0	0	0	
			Human Rights					
TOTA	L I			16	0	11	19.5	

I B. Tech. I Semester Proposed Course Structure for the Regulation SITE 21

I B. Tech. II Semester Proposed Course Structure for the Regulation SITE 21

Г

S. No.	СС	Course code	Course Title	L	Т	Р	С
1	HSC	21CMEGT2010	Technical English	3	0	0	3
2	BSC	21CMMAT2020	Engineering Mathematics – II (Linear algebra, Laplace Transforms and Numerical Methods)	3	0	0	3
3	ESC	21CMEET2030	Basic Electrical Engineering	3	0	0	3
4	ESC	21CMCST2040	Python Programming	1	0	4	3
5	ESC	21EEMET2050	Engineering Mechanics	3	0	0	3
6	HSC	21CMEGL2060	English Communication Skills Lab	0	0	3	1.5
7	ESC	21CMEEL2070	Basic Electrical Engineering Lab	0	0	3	1.5
8	ESC	21CMMEL2080	Engineering Workshop Lab	0	0	3	1.5
9	MC	21CMCHN2090	Environmental Science	2	0	0	0
			TOTAL	15	0	13	19.5

S. No.	сс	Course Code	Course Title	L	Т	Р	С
1	BSC	21CMMAT3010	Engineering Mathematics -III (Vector Calculus and Complex Analysis)	3	0	0	3
2	ESC	21MEMET3020	Materials Engineering	3	0	0	3
3	PCC	21MEMET3030	Mechanics of Solids	3	0	3	3
4	PCC	21MEMET3040	Thermodynamics	3	0	0	3
5	PCC	21MEMET3050	Fluid Mechanics and Fluid Machines	3	0	3	3
6	ESC	21MEMEL3060	Mechanics of Solids &Materials Lab	0	0	3	1.5
7	PCC	21MEMEL3070	Fluid Mechanics and Fluid Machine s Lab	0	0	3	1.5
8	SOC	21MEMES3080	Computer Aided Engineering Drawing and Drafting (CAEDP)	1	0	2	2
9	MC	21MEECN3090	Basic Electronics Engineering	3	0	0	0
			Total	19	0	14	20

II B. Tech. III Semester Proposed Course Structure for the Regulation SITE 21

II B. Tech. IV Semester Proposed Course Structure for the Regulation SITE 21

S. No.	сс	Course Code	Course Title	L	Т	Р	Cr
1.	BSC	21 CMMAT 4010	Engineering Mathematics –IV (Fourier series, Applications of PDE and Probability &	3	0	0	3
2.	PCC	21MEMET4020	Applied Thermodynamics	3	0	0	3
3.	PCC	21MEMET4030	Design of Machine Elements - I	3	0	0	3
4.	PCC	21MEMET4040	Production Technology	3	0	0	3
5.	PCC	21MEMET4050	Kinematics of Machinery	3	0	0	3
6.	HSC	21MEMST4060	Engineering Economics and Financial Management	3	0	0	3
7.	PCC	21MEMEL4070	Thermal Engineering Lab	0	0	3	1.5
8.	PCC	21MEMEL4080	Production Technology Lab	0	0	3	1.5
9.	SOC	21MEMES4090	Computer Aided Three- Dimensional Interactive Application (CATIA)	1	0	2	2
10.			Total	19	0	8	23
H/M			Honors/Minor courses (The hours distribution can be 3- 0-2 or 3-1-0 also)	4	0	0	4

S.	CC	Course Code	Course Title	L	Т	Р	Cr
No.							
1	PCC	21MEMET5010	Machine Tools and Metrology	3	0	0	3
2	PCC	21MEMET5020	Dynamics of Machinery	3	0	0	3
3	PCC	21MEMET5030	Design of Machine Elements-	3	0	0	3
			II				
4	PEC	21MEMEP504X	Professional Elective-I	3	0	0	3
5	OEC	21MEXXO505X	Open Elective Course-I	3	0	0	3
6	PCC	21MEMEL5060	Machine Tools and Metrology	0	0	3	1.5
			Lab				
7	PCC	21MEMEL5070	Theory of Machines Lab	0	0	3	1.5
8	SOC	21CMAHS5080	Soft Skills & Aptitude	1	0	2	2
			Builder - 1				
9	MC	21MEMEN5090	Machine Drawing Practice	0	0	3	0
			Lab				
			Summer Internship (2				
10	SI	21MEMER5100	months) after II year to be	0	0	0	1.5
			evaluated during V semester				
			Total	16	0	11	21.5
			Honors/Minor courses (The				
11	H/M		hours distribution can be 3-	4	0	0	4
			0-2 or 3-1-0 also)				

III B. Tech. V Semester Course Structure for the Regulation SITE 21

Professional Elective Course -I

S.	CC	Course Code	Course Title	L	Т	Р	Cr				
No.											
1			Conventional and Non-	3	0	0	3				
$\frac{1}{2}$		ZIMEMEF504A	Conventional Power Stations								
2		21MEMEP504B	Nano Technology	3	0	0	3				
2	PEC	PEC DIMEMEDEO40	Industrial Robotics with	3	0	0	3				
3		21MEMEP504C	Artificial Intelligence								
4		21MEMEP504D	Advanced Materials	3	0	0	3				
5		21MEMEP504E	Industrial Management	3	0	0	3				
NPTEL	NPTEL/SWAYAM/MOOCs (Course of 12 Weeks duration) to be offered										

S.	CC	Course Code	Course Title	L	Т	Р	Cr			
No.										
1	PCC	21MEMET6010	CAD/CAM/CIM	3	0	0	3			
2	PCC	21MEMET6020	Finite Element Methods	3	0	0	3			
3	PCC	21MEMET6030	Heat Transfer	3	0	0	3			
4	PEC	21MEMEP604X	Professional Elective-II	3	0	0	3			
5	OEC	21MEXXO605X	Open Elective Course-II	3	0	0	3			
6	PCCL	21MEMEL6060	CAD/CAM Lab	0	0	3	1.5			
7	PCCL	21MEMEL6070	Heat Transfer Lab	0	0	3	1.5			
8	PCCL	21MEMEL6080	Instrumentation and	0	0	3	1.5			
			Mechatronics Lab							
9	SOC	21CMAHS6090	Soft Skills & Aptitude	1	0	2	2			
			Builder - 2							
10	MC	21CMBIN6100	Biology for Engineers	2	0	0	0			
11	1/DI	Research Interns	ship - 2 Months (Mandatory) afte	er Th	ird	year	(to be			
	1/ KI	evaluated during	g VII semester							
			Total	18	0	11	21.5			
			Honors/Minor courses (The							
12	H/M		hours distribution can be 3-	4	0	0	4			
			0-2 or 3-1-0 also)							

III B. Tech. VI Semester Course Structure for the Regulation SITE 21

Professional Elective-II

S.	СС	Subject Code	Name of the subject	L	Т	Ρ	Cr
No.							
1		21MEMEP604A	Gas Dynamics and Jet	3	0	0	3*
			Propulsion				
2		21MEMEP604B	Mechanical Vibrations	3	0	0	3*
3	DEC	21MEMEP604C	Instrumentation and	3	0	0	3*
	PEC		Mechatronics				
4		21MEMEP604D	Unconventional Machining	3	0	0	3*
			Processes				
5		21MEMEP604E	Energy Management	3	0	0	3*
NPTEI	L/SWAYAM/	MOOCs (Course o	of 12 Weeks duration) to be offe	red			

S.	CC	Course Code	Course Title	L	Т	Ρ	Cr
No.							
1	PEC	21MEMEP701X	Professional Elective-III	3	0	0	3
2	PEC	21MEMEP702X	Professional Elective-IV	3	0	0	3
3	PEC	21MEMEP703X	Professional Elective-V	3	0	0	3
4	OE	21MEXXO704X	Open Elective Course-III	3	0	0	3
	C						
5	OE	21MEXXO705X	Open Elective Course-IV	3	0	0	3
	C						
6	HSC	21MEMET7060	Operation Research	3	0	0	3
7	SOC	21MEMES7070	Modelling and Analysis (FEA)	1	0	2	2
			Research Internship - 2				
8	I/RI	21MEMER7080	Months (Mandatory) after	0	0	6	3
	/		Third year (to be evaluated				
			during VII semester	10			
			Total	19	0	8	23
	н/		Honors/Minor courses (The				
9	M		hours distribution can be 3-0-	4	0	0	4
	TAT		2 or 3-1-0 also)				

IV B. Tech. VII Semester Course Structure for the Regulation SITE 21

Professional Elective Course -III

S. No.	сс	Course Code	Course Title	L	Т	Р	Cr
1		21MEMEP701A	Prime Movers for Automobiles	3	0	0	3
2		21MEMEP701B	Mechanics of Composites	3	0	0	3
3	PEC	21MEMEP701C	Non – Destructive Evaluation	3	0	0	3
4		21MEMEP701D	Micro Electro Mechanical	3	0	0	3
			Systems				
5		21MEMEP701E	Product Design and Development	3	0	0	3
NPTE	L/SW	AYAM/MOOCs (Co	ourse of 12 Weeks duration) to be of	fere	ed		

Professional Elective Course -IV

S. No.	сс	Course Code	Course Title	L	T	Р	Cr
1		21MEMEP702A	Refrigeration & Air Conditioning	3	0	0	3
2	DEC	21MEMEP702B	Synthesis and Characterization of Materials	3	0	0	3
3	PEC	21MEMEP702C	Smart Manufacturing and IIOT	3	0	0	3
4		21MEMEP702D	Tribology	3	0	0	3
5		21MEMEP702E	Hydrogen & Fuel Cells	3	0	0	3
NPTE	L/SWA	AYAM/MOOCs (Co	ourse of 12 Weeks duration) to be offe	red			

S.	CC	Course Code	Course Title	L	Т	Ρ	Cr
No.							
1		21MEMEP703A	Solar Energy Engineering and	3	0	0	3
			Applications				
2	DEC	21MEMEP703B	Additive Manufacturing	3	0	0	3
3	PEC	21MEMEP703C	Production Planning and Control	3	0	0	3
4		21MEMEP703D	Machine Tool Design	3	0	0	3
5]	21MEMEP703E	Computational Fluid Dynamics	3	0	0	3
NPTE	L/SW/	AYAM/MOOCs (Co	ourse of 12 Weeks duration) to be offe	red			

Professional Elective Course -V

IV B. Tech. II Semester Course Structure for the Regulation SITE 21

S. No.	СС	Course Code	Course Title	L	Т	Р	Cr
1	Project	21MEMER8010	Project, Seminar and Internship in Industry (6 months)	0	0	0	12
			Total	0	0	0	12
Comparison	of suggested	breakup of	AICTE, A	PSCHE	and SITE	21Curriculum	
------------	--------------	-------------	-----------	-----------	----------	--------------	
Credit	Distribution	for B.Tech.	. Mechani	ical Engi	ineering	Program	

		No. of Credits			
S.No.	Category	Suggested by AICTE	APSCHE	Proposed SITE-21	
1	Humanities and Social Sciences	9	10.5	10.5	
2	Basic Science Courses	30	21	18	
3	Engineering Science Courses	27	24	24	
4	Professional Core Courses	50.5	51	54	
5	Professional Elective Courses	18	15	15	
6	Open Elective Courses	9	12	12	
7	Project Work , Seminar and Internship	15	16.5	16.5	
8	Skill oriented Courses	-	10	10	
9	Mandatory Courses	-	-	-	
	Total Credits	160	160	160	

Semester Wise Number of Credits of AICTE, APSCHE and SITE21Curriculum

SEMESTED	CREDITS					
SEMIESIER	AICTE	APSCHE	JNTUK R20	SITE-21		
Ι	17.5	19.5	19.5	19.5		
II	20.5	19.5	19.5	19.5		
III	23	21.5	21.5	20		
IV	19	21.5	21.5	23		
V	20.5	21.5	21.5	21.5		
VI	21.5	21.5	21.5	21.5		
VII	18.5	23	23	23		
VIII	18	12	12	12		
TOTAL	160	160	160	160		

COURSE STRUCTUREAND SYLLABUS SITE-21 REGULATIONS

For I B.Tech. I Semester Mechanical Engineering

S. No.	сс	Course code	Course Title	L	Т	Р	С
1	BSC		Engineering Mathematics – I	3	0	0	3
		21CMMAT1010	(Calculus and Differential Equations)				
2	BSC	21EEPHT1020	Engineering Physics	3	0	0	3
3	BSC	21CMCHT1030	Engineering Chemistry	3	0	0	3
4	ESC	21CMCST1040	Programming for Problem Solving	3	0	0	3
5	ESC	21CMMEL1050	Engineering Graphics	2	0	2	3
6	BSC	21EEPHL1060	Engineering Physics Lab	0	0	3	1.5
7	BSC	21CMCHL1070	Engineering Chemistry Lab	0	0	3	1.5
8	ESC	21CMCSL1080	Programming for Problem Solving Lab	0	0	3	1.5
9	МС	21CMMSN1090	Constitution of India, ProfessionalEthics & Human Rights	2	0	0	0
TOTA	Ŀ		· · · · · · · · · · · · · · · · · · ·	16	0	11	19.5

I B. Tech. I Semester Proposed Course Structure for the Regulation SITE 21

ENGINEERIN	IG MATHEMATICS-I		
(Calculus & Di	ifferential Equations		
(Syllabus for the a	cademic year 2021 -2	022)	
Common t	o all the branches		
SEM	ESTER - I/I	TA DØ 1	00
Subject Code	21CMMAT1010/20	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Course Objectives:			
1. To solve the differential equati	ons related to various	engineering fi	elds
2. To enlighten the learners in th	e concept of different	ial equations.	
3. To familiarize with functions o	f several variables wh	ich is useful in	1
optimization		a 4	
4. To solve the partial partial diff	erential equations of	first order	
5. To apply double integration to	echniques in evaluatir	ng areas bound	led by
region.			
Unit -1			
Differential Equations of first orde	er and first degree:		_
Linear differential equations - Berno	ulli´s equations – Exac	ct equations I	Hours –
and Equations reducible to exact for	m.		10
Applications: Newton's law of cooling - Law of natural growth and			
decay - Orthogonal trajectories.			
Unit -2			
Linear differential equations of high	gher order: Homogen	eous and	
Non-homogeneous differential equat	ions of higher order w	vith	Hours –
constant coefficients – with non-hom	nogeneous term of the	e type e ^{ax} ,	10
sin ax, cos ax, polynomials in x ⁿ , e ^{ax}	$V(x)$ and $x^n V(x) - Me$	thod of	
Variation of parameters.			
Applications: LCR circuit.			
Unit – 3			
Partial differentiation:			
Introduction – Homogeneous functio	on – Euler's theorem–	Total	Hours –
derivative- Chain rule- Jacobian - F	unctional dependence	e –Taylor's	10
and MacLaurin's series expansion of	f functions of two vari	ables.	-
Applications: Maxima and Minima	a of functions of tw	o variables	
without constraints and Lagrange's	method.		
Unit – 4			
PDE of first order:			_
Formation of partial differential equations by elimination of arbitrary			
constants and arbitrary functions	- Solutions of first (order linear	08
(Lagrange) equation and nonlinear (s	standard types) equat	ions.	
	1	<u> </u>	-
Multiple integrals: Double and Trip	ole integrals – Change	ot order of	Hours –

integration in double integrals – Change of variables to polar,	12				
cylindrical and spherical coordinates.					
Applications: Finding Areas and Volumes.					
Course outcomes:					
On completion of this course, students are able to					
1. Solve the differential equations related to various engineering fi	elds (L3)				
2. Solve the differential equations of higher C order related to varie engineering fields (L3)	ous				
3. familiarize with functions of several variables which is useful in optimization (L3)					
4. Solve the partial partial differential equations of first order (L3)					
5. Apply double integration techniques in evaluating areas bound region (L3).	ed by				
Question paper pattern:					
1. Question paper consists of 10 questions.					
2. Each full question carrying 14 marks.					
3. Each full question will have sub question covering all topics un	3. Each full question will have sub question covering all topics under a unit.				
4. The student will have to answer 5 full questions selecting one full	ıll				
question from each unit.					
Text Books:					
 B. S. Grewal, Higher Engineering Mathematics, 44th Edition, K Publishers. 	hanna				
2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition,	Tata Mc.				
Graw Hill Education.					
Reference Books:					
1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Editi	on, Wiley-				
India.					
2. Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calcu	ılus,				
14thEdition, Pearson.					
3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Pres	ss, 2013.				
4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford U	Jniversity				
Press.					

ENGINEE	RING PHYSICS		
(Introduction) (Common for M	on to Mechanics <u>)</u> F & CF in I Seme	ater)	
		sterj	
Subject Code	21CEPHT1020 21MEPHT1020	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
Cre	dits – 03		
COURSE OBJECTIVES:			
The objectives of this course, help	the students		
• To explore the knowledge of	f fundamental vil	orations.	
• To impart the concept of New	wton's law of moti	on in central for	ce field.
• To enable the students to u	nderstand the Ri	gid body dynam	lics.
• To study the structure- p	roperty relations	hin exhibited 1	ov solid
materials with in the elastic	limits.	inp childred	<i>by bolla</i>
Unit -1			
One Dimensional motion: Newto	on's Equation of	motion in one	
dimension-examples of particle f	alling under a g	ravity. Simple	
harmonic motion (Mechanical osc	cillator) and its c	haracteristics.	Hours
damped harmonic motion (Mech	anical oscillator)	and damping	- 11
conditions (over-damped, critical)	v damped and i	inder damped	
conditions). Forced oscillations	(Mechanical os	cillator) - un	
damped and damped conditions, F	Resonance.	unator, un	
Unit -2			
Two dimensional motions: Tw	o-Dimensional r	notion in the	
Cartesian coordinate system -	Example of Pro	jectile motion	
without air drag; Two-Dimensio	onal motion in	Radial polar	Hours
coordinate system- Example of p	lanetary motion.	Kepler's laws	- 11
and their deduction, Newton equa	tions for variable	e mass system	
(rocket), Calculations of Centre of	mass and its cha	racteristics.	
Unit -3	<u> </u>		
Conservative & Non-Conserva	tive motion:	Invariance of	
Newton's equations-Under shift of	of coordinate sys	stem - Galileo	
transformation - Accelerating fram	es of reference, R	eference frame	Hours
rotating with a constant angula	ar velocity, Cent	ritugal Force-	- 9
Apparent gravitational accelerat	ion, Coriolis foi	ce -Effect of	
Coriolis force on a freely falling h	oody. Conserva	tive and Non-	
Conservative forces.			
Unit – 4			

Rigid body dynamics: Angular momentum of a single particle and system of particle, conservation of angular momentum; Equation of motion of a rigid body; Kinetic energy of a rigid rotating body; Moment of Inertia, Calculations of moment of inertia-rectangular lamina and Uniform cylinder (rod, circular disc); Parallel axis theorem and perpendicular axis theorem and their applications; Euler's equation describing rigid body motion.	Hours – 10			
Unit – 5				
Elasticity: Stress, Strain, Hook's law, stress strain curve,				
generalized Hook's law with and without thermal strains for				
isotropic materials, Factors affecting the elastic behavior, energy	Hours			
stored per unit volume in stretched wire, different types of moduli	-9			
and their relations, bending of beams, Bending moment of a beam,				
Depression of cantilever.	1			
COURSE OUTCOMES:				
On completion of the course student will able to				
1. Distinguish the various harmonic motions and resonance.				
2. Apply Newton's law of motion to understand the motions of				
mechanical systems.				
3. Verify the invariance of Newton's equation of motion.				
4. Understand the concept of conservative and non-conservative	<i>r</i> e			
motions.				
5. Formulate the rigid body dynamics.				
6. Study the structure- elastic property correlation under load within				
the elastic limits.				
QUESTION PAPER PATTERN:				
1. It will have 5 questions with internal choice.				
2. Each question carries 14 marks.				
3. Each full question comprises sub questions covering all topic	s under			
a unit.				
TEXT BOOKS:				
1. Introduction to Mechanics — MK Verma.				
2. A Text Book of Engineering Physics- M.N.Avadhanulu,	11e ,			
S.CHAND,				
REFERENCE BOOKS:				
1. S.L Gupta& D.L. Gupta, Unified physics				
2. An Introduction to Mechanics — D Kleppner & R Kolenkow				
3. Principles of Mechanics — JL Synge & BA Griffiths.				
4. Engineering Physics- Ch. Srinivas, Ch. Sesubabu Cengage le	arning.			
WEB SOURCES:				
W1: <u>http://www.physics.org/news.asp</u>				
W2: http://www.phys.lsu.edu/newwebsite/lecturedemo/				
W3: <u>http://www.nptl.ac.in</u>				
W4: American Association of Physics Teachers [http://www.aapt	.org/]			

ENGINEERING CHEMISTRY SEMESTER - I/I				
21CMCHT1030/ 2030	IA Marks		30	
3	Exam Marl	KS	70	
48	Exam Hour	rs	03	
edits – 03				
 COURSE OBJECTIVES: The objectives of this course, help the students to Explain the mechanism of corrosion Interpret various boiler troubles and importance of water quality standards. Learn preparation of semiconducting materials, nanomaterials and liquid crystals – their applications Acquire knowledge on nonconventional energy resources and different types of batteries Know various spectroscopic techniques. Acquire knowledge on volumetric analysis. Module-1 				
 ELECTROCHEMISTRY AND CORROSION Electro chemistry: Introduction, electrode potential, standard electrodes – Hydrogen and Calomel electrodes, Nernst equation and applications. Corrosion: Introduction, Mechanism of Wet chemical corrosion, control methods – proper designing, cathodic protection-Sacrificial anodic and impressed current cathodic protection. 			s –9	
 WATER CHEMISTRY AND SURFACE PROPERTIES Water chemistry: Surface and subsurface water quality parameters – turbidity, pH, total dissolved salts, chloride content, Hardness of water, Temporary and Permanent hardness, Units, determination of hardness by complexometric method. Boiler troubles, Caustic Embrittlement, Priming and foaming, Boiler corrosion. Break point chlorination. Surface properties: Determination of surface tension and viscosity of liquids. 			s –9	
	ESTER - I/I 21CMCHT1030/ 2030 3 48 edits - 03 the students to orrosion oubles and import conducting material ations onventional energy of techniques. netric analysis. EROSION electrode potential el electrodes, Nerns sm of Wet chemical igning, cathodic pro- sm of Wet chemical igning, cathodic pro- ACE PROPERTIES 1 subsurface wat tal dissolved salts Temporary and D hardness by comp Embrittlement, Pro- point chlorination. ion of surface ter	ESTER - I/I 21CMCHT1030/ 2030 3 Exam Marl 48 Exam Marl 48 Exam Hour edits - 03 the students to orrosion publes and importance of war conducting materials, nanomarations onventional energy resources and techniques. netric analysis. EROSION electrode potential, standard el electrodes, Nernst equation sm of Wet chemical corrosion, igning, cathodic protection- current cathodic protection- current cathodic protection. ACE PROPERTIES 1 subsurface water quality tal dissolved salts, chloride Temporary and Permanent hardness by complexometric Embrittlement, Priming and point chlorination. ion of surface tension and	ESTER - I/I 21CMCHT1030/ 2030 3 Exam Marks 48 Exam Mours edits - 03 the students to orrosion publes and importance of water quarterials ations onventional energy resources and different techniques. metric analysis. EROSION electrode potential, standard el electrodes, Nernst equation sm of Wet chemical corrosion, igning, cathodic protection- current cathodic protection. Hour ACE PROPERTIES 1 subsurface water quality tal dissolved salts, chloride Temporary and Permanent Thardness by complexometric Embrittlement, Priming and point chlorination. ion of surface tension and	

MATERIAL CHEMISTRY Non-elemental semiconducting materials: Stoichiometric, controlled valency and chalcogen photo/semiconductors and preparation of semiconductors (distillation, zone refining, Czochralski crystal pulling, epitaxy, diffusion and ion implantation). Liquid crystals: Introduction, types and applications. Nanoparticles: Introduction, preparation methods – Sol-gel method, Chemical reduction method – Preparation of carbon nanotubes (Arc discharge, chemical vapour deposition and laser ablation methods) properties and applications	Hours – 10
Module – 4	
ENERGY SOURCES: Non-conventional energy sources, Design, working, schematic diagram, advantages and disadvantages of photovoltaic cell,hydropower, geothermal power, tidal and wave power, ocean thermal energy conversion. Batteries and fuel cells: Primary and secondary batteries - Dry cell, Lead Acid Cell, Lithium-ion battery and Zinc air cells and fuel cells - H ₂ -O ₂ , CH ₃ OH-O ₂ , Phosphoric acid and molten carbonate.	Hours – 10
Module – 5	
SPECTROSCOPY AND CHROMATOGRAPHY TECHNIQUES Regions of electromagnetic spectrum - Principles of vibrational and rotational spectroscopy. Vibrational and rotational spectroscopy of diatomic molecules: Rigid diatomic molecules - selection rule - simple Harmonic Oscillator - diatomic vibrating rotator. Nuclear magnetic resonance – Principle and Instrumentation. Principles of chromatography – Thin Layer & Paper Chromatography.	Hours – 10
COURSE OUTCOMES: On completion of the course student will be able to 1. Interpret the mechanism of corrosion 2. Summarize the problems faced in industries due to boiler 3. Recall the properties and applications of advanced materia	troubles.

- 3. Kecall the properties and applications of advanced materials.
 4. Summarize the advantages of non-conventional energy resources and batteries.
- 5. Able to gain knowledge on spectroscopic techniques and the ranges of the electromagnetic spectrum used for exciting different molecular energy levels.
- 6. Determine the strength of acid, base and some elements by volumetric

and instrumental analysis.

QUESTION PAPER PATTERN:

- 1. It will have 5 questions with internal choice.
- 2. Each question carries 14 marks.
- 3. Each full question comprises sub questions covering all topics under a unit.

TEXT BOOKS:

- P.C. Jain and M. Jain "Engineering Chemistry", 15/e, Dhanpat Rai & Sons,Delhi,
- 2. Shikha Agarwal, "**Engineering Chemistry**", Cambridge University Press, (2019)
- 3. S.S. Dara, **"A Textbook of Engineering Chemistry**", S.Chand & Co, (2010).
- 4. Shashi Chawla, "Engineering Chemistry", Dhanpat Rai Publicating Co. (Latest edition).
- 5. Fundamentals of Molecular Spectroscopy, by C. N. Banwell.

REFERENCE BOOKS:

- 1. K. Sesha Maheshwaramma and Mridula Chugh, "**Engineering Chemistry**", Pearson India Edn.
- 2. O.G. Palana, "**Engineering Chemistry**", Tata McGraw Hill Education Private Limited, (2009).
- 3. CNR Rao and JM Honig (Eds) "**Preparation and characterization of materials**" Academic press, New York (latest edition)

PROGRAMMING	FOR PROBLEM	SOLVING		
SE	MESTER - I/I			
Subject Code	21CMCST1040	IA Marks	30	
Number of Lecture Hours/Week	03	Exam Marks	70	
Total Number of Lecture Hours	50	Exam Hours	03	
C	Credits – 03			
COURSE OBJECTIVES:				
The Objectives of Programming fo	r problem solving	g are:		
 To learn about C programming language syntax, semantics, and the runtime environment. To be familiarized with general computer programming concepts like data types, conditional statements, loops and functions. To be familiarized with general coding techniques and procedure-oriented programming. 				
Unit -1				
History& Hardware: (TB 1: Components, Types ofSoftware, M Introduction to Problem solvin Characteristics of Algorithms, Algorithms, Pseudo Code, Flowch Relation between Data, Informatic Basics of C: (TB1:58-67) Hist Importance of C, Procedural Lat Interpreter, Structure of C Progra Steps, Programming Errors.	Hours – 11			
Unit -2			1	
 Overview of C:(TB:68-125) Cl Types, Variables, Constants, Oper Associativity, Converting Mathem expressions, Evaluation of C- Functions. Conditional Branching:(TB1:14 statement, Nested ifelse statem statement. Unconditional Branching:(TB1 Statements: break, continue. Looping Constructs:(TB1:156-1 statement, for statement. 	haracter Set, C- rators, Operator F latical Express Expressions, 43-152) if state nent, ifelseif :174-175) goto.	Tokens, Data Precedence and sionsto C- Input/Output ment, ifelse ladder, switch Control flow atement, while	Hours – 11	

Unit -3	
Arrays:(TB1:188-222) Introduction, 1-D Arrays,	
Character arrays and string representation, 2-D Arrays	
(Matrix), Multi-Dimensional Arrays.	
library and user defined)	Iours – 9
Functions: (TB1:230-260) Basics Necessity and Advantages	
Types of Functions. Parameter Passing Mechanisms, Recursion.	
Storage Classes, Command Line Arguments, Conversion from	
Recursion to Iteration and Vice-Versa.	
Unit – 4	
Pointers:(TB1:288-347) Understanding Pointers, Pointer	
Expressions, Pointer and Arrays, Pointers and Strings, Pointers	
to Functions. Dynamic Memory Allocation:	
Introduction to Dynamic Memory Allocation- malloc (), calloc (),	
realloc (), free ().	
Structures and Unions:(TB1:370-394) Defining a Structure,	Hours –
typedef, Advantage of Structure, Nested Structures, Arrays of	10
Structures, Structures and Arrays, Structures and Functions,	
Structures and Pointers, Defining Unions, Union with in Union,	
Structure within Union Unionwithin Structure	
Self Deferential Structures, Bitfields, Enumerations	
The second structures, Difficults, Enumerations.	
Unit - 5 Proprocessing Directives (TP2:225, 222) Magra Substitution	
File Inclusion Conditional Compilation and Other Directives	
File Management In C:(TB1:408-422) Introduction to File	
Management, Modes and Operations on Files, Types of Files	10415 2
Error Handling during I/O Operations.	
COURSE OUTCOMES:	
On completion of the course student can able to	
1. Demonstrate computer components, algorithms, translate ther	m into pro
2. Choose the suitable control structures for the problem to be so	olved.
3. Make use of arrays, pointers, structures, and unions effectively	y.
4. Organize reusable code in a program into functions.	
5. Demonstration of file operations.	
QUESTION PAPER PATTERN:	
1. It will have 5 questions with internal choice.	
2. Each question carries 14 marks.	
3. Each full question comprises sub questions covering all topics	s under a
unit.	

TEXT BOOKS:

- 1. Programming in C ,Pradip Dey ,Manas Ghosh, OXFORD
- 2. Programming in ,C Reema Thareja,Second Edition, OXFORD
- 3. Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, CENGAGE.

REFERENCE BOOKS:

- 1. Computer Fundamentals and Programming, Sumithabha Das, Mc Graw Hill.
- 2. Programming in C, Ashok N. Kamthane, Amit Kamthane, Pearson.

ENGINEER SEMI	RING GRAPHICS ESTER - I/I		
Subject Code	21CMMEL1050	IA Marks	30
Number of Lecture Hours/Week	2(L)+02(P)	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
Cre	edits – 03		
 COURSE OBJECTIVES: Upon successful completion of the 1. construct polygons, scales, engine hyperbola, cycloids, involutes) 2. draw orthographic projections of 3. draw the orthographic projections 4. draw sectional views of solids 5. convert given isometric view interaction of the AutoCAD software. Unit -1 Introduction to Engineering Drating Engineering Graphics and their statements, lettering, Conic section (Eccentricity method only); plain Cycland Vernier scales only. 	course, s tudent neering curves (p points, lines and s of simple solids o orthographic v awing covering significance, usa ns – Ellipse, Para loid, and Involute	s should be able barabola, ellipse, planes. iew and vice ver Principles of age of drawing bola, Hyperbola s; Scales – Plain	to sa using Hours – 10
Init 0			
Projections of Points, Projections inclined to both planes; Projections of	of straight lines f planes (inclined	s and the line to one reference	Hours – 8
Init -3			
Projections of regular polyhedrons – octahedron (axis inclined to one refer Projections of irregular polyhedrons Cylinders (axis inclined to one referen	- tetrahedron, he rence plane only) s – Prisms, Pyrar nce plane only).	xahedron, nids, Cones and	Hours – 8
Unit – 4			
Sectional Views of Right Angular S Pyramid andCone	Solids covering	Prism, Cylinder,	Hours – 12
Unit – 5			
Introduction to AutoCAD - The Me	nu System, Tool	bars (Standard.	
Object Properties, Draw, Modify and (Background, Crosshairs, Coordina Windows. Isometric Projections, Pri- Isometric Scale, Isometric Views, C lines, Planes, Simple and compound Views to Orthographic Views and Vic	Dimension Tools ate System), Dia nciples of Isomet Conventions; Isor d Solids; Convers ce-versa.), Drawing Area alog boxes and cric projection – netric Views of ion of Isometric	Hours -12

COURSE OUTCOMES:

Upon the successful completion of this course, the students will be able to

- 1. Construct polygons, scales and engineering curves
- 2. Draw the orthographic views of points, lines and planes
- 3. Construct the projections of regular and irregular polyhedrons
- 4. Draw the sectional views of solids
- 5. Draw isometric/orthographic views using AutoCAD

QUESTION PAPER PATTERN:

- 1. It will have 5 questions with internal choice.
- 2. Each question carries 14 marks.
- 3. Each full question comprises sub questions covering all topics under a unit.

TEXT/REFERENCE BOOKS:

- 1. N.D. Bhatt, Engineering Drawing, Charotar Publications
- 2. R.B.Choudary, Engineering Drawing, Anuradha Publishers
- 3. Agarwal & Agarwal, Engineering Drawing, Tata McGraw Hill Publishers
- 4. K.L.Narayana & P.Kannaiah, Engineering Drawing Scitech Publishers
- 5. K.C. John, Engineering Graphics for Degree, PHI Publishers
- 6. PI Varghese, Engineering Graphics, McGrawHill Publishers
- 7. K Venugopal, V. Prabhu Raja, Engineering Drawing + AutoCAD, New Age

ENGINEERIN	G PHYSICS LAB		
(Common for ME	& CE in I-Seme	ster)	
Subject Code	21MEPHL1060 21CEPHL1060	IA Marks	15
Number of Practice Hours/Week	03	Exam Marks	35
Total Number of Practice Hours	36	Exam Hours	03
	Credits – 1.5		
COURSE OBJECTIVES:			
The objectives of this course, help t	the students		
• To apply the theoretical kn	owledge of Physic	cs through hand	ls on
the experimental instrumer	its		
• To improve the experiment	al knowledge in t	the later studies	
• To understand the basic no	eed of experiment	cs.	
• To know how to measure the table to the table to the table tab	he different physi	cal quantities.	
• To acquire ability to use in	strumentation te	chniques.	
• To train the students to	develop techni	ques based on	the
principles related to various	devices or comp	onents.	
List of E	xperiments		
1. Investigation of the Motion of	Coupled Oscillate	ors.	
2. Determination of the rigid	lity modulus η	of wire-Tors	ional
pendulum.			
3. Determination of acceleration	due to gravity q a	nd radius of gyra	ation
<i>K</i> - Compound pendulum.			
4. Determination of the Frequence	cy of an electrical	ly maintained tu	ining
fork by Melde's Experiment.			
5. Determination of the velocity	of sound in air-V	olume resonator	•
6. Verification of the laws of tran	sverse vibrations	s of stretched win	re.
7. Determination of the Young's	s modulus and d	raw load depres	ssion
graph in uniform bending.		1 1	
8. Determination of the Moment	of Inertia of a Fly	wheel.	1
9. Verification of the parallel axis	and perpendicul	ar axis theorems	and
Difiler pendulum	ertia of a regular	r rectangular bo	bay -
10 Determination of the frequen	or of the AC Sour	too using Sonom	otor
Demonstration experiments:	cy of the AC Soul	ce using Sonom	leter.
1 Determination of Young's	Modulus Modul	us of rigidity	and
Poisson's ratio of the material	of a given wire b	v Searle's dynar	nical
method		y sourre s'ayriar	moui
2. Study of the variation of mo	ment of inertia of	of a system with	1 the
variation in the distribution of	mass and hence	to verify the the	orem
of parallel axes (Maxwell' need	lle method).	5	

TEXT BOOKS:

1. "Physics Laboratory Manual" Prepared by Department of Physics, SITE.

REFERENCE BOOKS:

- 1. S. Balasubrahmanian, M.N. Srinivasan "A Text book of Practical Physics"- S. Chand Publishers, 2017.
- 2. Advanced Practical Physics Vol 1& 2 SP Singh & M.S Chauhan Pragati Prakashan, Meerut.

WEB SOURCES:

1. http://vlab.amrita.edu/index.php -Virtual Labs, Amrita University COURSE OUTCOMES:

On completion of the course student will able to

- 1. **Compare** the theory and correlated with experiments
- 2. **Design** experiments
- 3. **Analyze** the experimental result
- 4. Apply appropriate techniques to perform the experiments
- 5. **Apply** the knowledge in simple harmonic motions and resonance to understand the rigid body dynamics.
- 6. **Verify** the parallel axis and perpendicular theorems of moment of inertia.

ENGINEERING CHEMISTRY LABORATORY				
Subject Code	21CMCHL1070/ 2070	IA Marks	15	
Number of Practice Hours/Week	3	Exam Marks	35	
Total Number of Practice Hours	36	Exam Hours	03	
Cred	its – 1.5			
List of E	xperiments			
(Any 10 experimen	ts must be condu	cted)		
1. Determination of HCl using	g standard Na2CO3	8 solution		
2. Determination of alkalinity	of a sample contai	ning Na2CO3 a	nd	
NaOH				
3. Determination of surface te	ension			
4. Determination of viscosity of	of a liquid by Ostwa	ald viscometer		
5. Determination of chloride c	ontent of water			
6. Determination total hardne	ess of water by ED1	Ϋ́Α.		
7. Determination of Mg ⁺² using	g standard oxalic a	cid solution.		
8. Determination of Cu ⁺² using	g standard hypo so	lution.		
9. Determination of the rate of	constant of first or	der reaction (E	ster	
hydrolysis)				
10. Determination of	strength of str	ong acid us	sing	
conductometeric titration.				
11. Determination of	strength of w	eak acid us	sing	
conductometeric titration .				
12. Determination of Fer	rous iron using po	tentiometer.		
13. Chemical oscillations	- Iodine clock reac	tion		
14. Estimation of Vitamin	n C.			
Demonstra	tion Experiments			
1. Thin Layer Chromatograph	у			
2. Determination of Fe ⁺³ by a c	colorimetric method	1.		

	PROGRAMMING FO	R PROBLEM SOLV	/ING LAB	
	SEM	ESTER - I/I		
Subje	ect Code	21CMCSL1080	IA Marks	15
Num	ber of Practice	03	Exam Marks	35
Hour	s/Week			
Total	Number of Practice Hours	48	Exam Hours	03
		Credits – 1.5		
COU	RSE OBJECTIVES:			
The c	objectives of this course, hel	p the students		
1.	To understand the various	steps in Program d	evelopment.	
2.	To understand the basic co	ncepts in C Progra	mming Language	
3.	To learn how to write modu	llar and readable C	Programs.	-
4.	To learn to write progr	ams (using strue	ctured program	ming
_	approach) in C to solve pro	blems.		
5.	To introduce basic data stru	actures such as list	s, stacks and que	eues.
D	LIST OF	EXPERIMENTS		
Exer	cise 1 (Familiarization wit	n programming e	nvironment)	
a)	Familiarization of CODE	BLUCKS C++ Edi	tor to edit, com	pne,
1.)	Execute, lest and debuggin	g C programs.		tand
D)	familiarization of RAPIOR	1001 to draw now cl	harts and unders	land
	Nonvointance with basic L	INUX commands		
Ever	cise 2 (Simple computatio	nal problems usin	a arithmetic	
expr	essions)			
a)	Write a C Program to displa	av real number wit	h 2 decimal place	S.
b)	Write a C Program to conve	ert Celsius to Fahre	enheit and vice ve	ersa.
c)	Write a C Program to calcul	ate the area of triar	gle using the form	nula
- /	area = $\sqrt{(s(s-a)(s-b)(s-c))}$	where s=a+b+c	/2.	
d)	Write a C program to fin	d the largest of t	hree numbers u	sing
<i>,</i>	ternary operator.	6		0
e)	Write a C Program to swap	two numbers with	out using a tempo	orary
,	variable.		0 1	5
Exer	cise 3 (Problems involving	if-then-else struc	tures)	
a)	Write a C Program to check	k whether a given n	umber is even or	odd
	using bitwise operator, shi	ft operator and arit	hmetic operator.	
b)	Write a C program to find t	he roots of a quad	ratic equation.	
c)	Write a C Program to displa	ay grade based on 6	subject marks u	ising
	ifelseif ladder.			
d)	Write a C program, which	n takes two intege	er operands and	one
	operator form the user, per	forms the operatio	n and then prints	s the
	result using switch control	l statement.(Consid	der the operators	+, -
	,*,/, %)			

Exercise 4 (Iterative problems)

- a) Write a C Program to count number of 0's and 1's in a binary representation of a given number.
- b) Write a C program to generate all the prime numbers between two numbers supplied by the user.
- c) Write a C Program to print the multiplication table corresponding to number supplied as input

Exercise 5 (Iterative problems)

- a) Write a C Program to Find Whether the Given Number is i)Armstrong Number ii) Palindrome Number
- b) Write a C Program to print sum of digits of a given number

Exercise 6 (Series examples)

- a) Write a C Program to calculate sum of following series
- b) 1+2+3+... b) 1+1/2+1/3+...+1/n c) 1+x+x2+x3...+xn

Exercise 7 (1D Array manipulation)

- a) Write a C program to interchange the largest and smallest numbers in the array.
- b) Write a C program to search an element in an array (linear search).
- c) Write a C Program to print the following pattern using a character array SA SAS
 - SASI

Exercise 8 (Matrix problems, String operations)

- a) Write a C program to add two matrices.
- b) Write a C program to multiply two matrices if they are compatible or print an error message "incompatible matrix sizes" otherwise.
- c) Write a C program to check given matrix is symmetric or not.
- d) Implement the following string operations with and without library functions. i)copy
- ii) concatenate iii) lengthiv) compare

Exercise 9 (Simple functions)

- a) Write a C Program demonstrating the following function types
 - i. With arguments and with return value.
 - ii. With arguments and without return value.

iii. Without arguments and without return value.

iv. Without arguments and with return value.

b) Write a C Program illustrating call by reference.

Exercise 10 (Recursive functions)

Write a C Program illustrating the following with Recursion without Recursion

a) Factorial b) GCD c) Power d) Fibonacci

Exercise 11(Pointers and structures)

a) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc ()

function.

b) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc () function.

Note: Understand the difference between the above two programs. c)Write a C Program to read and print student details using structures.

Exercise 12 (File operations)

a) Write a C program to open a file and to print it contents on screen.

b) Write a C program to copy files.

c)Write a C program merges two files onto a new file.

d)Write a C program to delete a file.

COURSE OUTCOMES:

- 1. Attain knowledge on using CODE BLOCKS and RAPTOR tools in solving problems.
- 2. Examine and analyze alternative solutions to a problem.
- 3. Design an algorithmic solution to a problem using problem decomposition and step- wise refinement.
- 4. Demonstrate conversion of iterative functions to recursive and vice-versa.

5. Implement the concepts of arrays, structures, Unions and files.

Text Books:

- 1. Computer Programing ANSI C, E Balagurusamy, Mc Graw Hill Education (Private), Limited
- 2. Programming in C, ReemaThareja, Second Edition, Oxford Higher Education

Reference Books:

1. Computer Basics and C Programming, V Raja Raman, Second Edition, PHI (RB1)

CONSTITUTION OF INDIA, PROFESSIONAL ETHICS & HUMAN				
SEME	STER - I/I			
Subject Code	21CMMSN1090	IA Marks		30
Number of Lecture Hours/Week	03	From Morles		70
Total Number of Lecture Hours	50	Exam Ho	urs	03
Cred	lits – 00	2.1	ui o	
COURSE OBJECTIVES:				
The objectives of this course help the	he students to			
1. To provide basic information abo	out Indian constitu	ation.		
2. To identify individual role and et	hical responsibilit	y towards	society	7.
3. To understand human rights and	d its implications.	5	5	
Unit - I	*			
Introduction to the Constitution of	India, The Making	g of the	TT	
Constitution and Salient features o	of the Constitution		Hou	rs –
Preamble to the Indian Constitution	n Fundamental Ri	ghts &	10	J
its limitations.				
Unit - II				
Directive Principles of State Policy	& Relevance of Dir	rective	TT	
Principles State Policy Fundamental Duties.			Hou	rs –
Union Executives – President, Prime Minister Parliament			10	,
Supreme Court of India.				
Unit – III				
State Executives – Governor, Chief	Minister, State Le	gislature	Нош	re _
High Court of State. Electoral Proc	ess in India, Ame	ndment	100	15 - 1
Procedures, 42nd, 44th, 74th, 76th	n, 86th &91 st		1(,
Amendments.				
Unit –IV				
Special Provision for SC & ST Spec	ial Provision for W	'omen,		
Children & Backward Classes Eme	rgency Provisions			
Human Rights –Meaning and Defin	itions, Legislation	Specific	Нош	rs –
Themes in Human Rights- Working	g of National Hum	an	100)
Rights Commission in India			- `	-
Powers and functions of Municipal	ities, Panchyats a	nd Co -		
Operative Societies.				
Unit – V				
Scope & Aims of Engineering Ethic	cs, Responsibility	of		
Engineers Impediments to Respons	sibility.	•	Hou	rs –
Risks, Safety and liability of Engine	eers, Honesty, Inte	egrity &	10	J
Reliability in Engineering.				
COURSE OUTCOMES:				
On completion of the course studer	nt will			

- 1. Have general knowledge and legal literacy and thereby to take up competitive examinations. 2. Understand state and central policies, fundamental duties. 3. Understand Electoral Process, special provisions. 4. Understand powers and functions of Municipalities, Panchayats and Co-operative Societies, and 5. Understand Engineering ethics and responsibilities of Engineers 6. Understand Engineering Integrity & Reliability **QUESTION PAPER PATTERN:** 1. It will have 5 questions with internal choice. 2. Each question carries 14 marks. 3. Each full question comprises sub questions covering all topics under a unit. **TEXT BOOKS:** 1. Durga Das Basu: "Introduction to the Constitution on India", (Students Edn.) Prentice -Hall EEE, 19th / 20th Edn., 2001 2. Charles E. Haries, Michael S Pritchard and Michael J. Robins "Engineering Ethics" Thompson Asia, 2003-08-05. **REFERENCE BOOKS**: 1. M.V.Pylee, "An Introduction to Constitution of India", Vikas Publishing, 2002. 2. M.Govindarajan, S.Natarajan, V.S.Senthilkumar, "Engineering Ethics", Prentice -Hall of India Pvt. Ltd. New Delhi, 2004 3. Brij Kishore Sharma, "Introduction to the Constitution of India", PHI Learning Pvt. Ltd., New Delhi, 2011.
 - 4. Latest Publications of Indian Institute of Human Rights, New Delhi

COURSE STRUCTUREAND SYLLABUS SITE-21 REGULATIONS

For I B.Tech. II Semester Mechanical Engineering

S. No.	СС	Course code	Course Title	L	Т	Р	С
1	HSC	21CMEGT2010	Technical English	3	0	0	3
2	BSC	21CMMAT2020	Engineering Mathematics – II (Linear algebra, Laplace Transforms and Numerical Methods)	3	0	0	3
3	ESC	21CMEET2030	Basic Electrical Engineering	3	0	0	3
4	ESC	21CMCST2040	Python Programming	1	0	4	3
5	ESC	21EEMET2050	Engineering Mechanics	3	0	0	3
6	HSC	21CMEGL2060	English Communication Skills Lab	0	0	3	1.5
7	ESC	21CMEEL2070	Basic Electrical Engineering Lab	0	0	3	1.5
8	ESC	21CMMEL2080	Engineering Workshop Lab	0	0	3	1.5
9	MC	21CMCHN2090	Environmental Science	2	0	0	0
			TOTAL	15	0	13	19.5

I B. Tech. II Semester Proposed Course Structure for the Regulation SITE 21

TECH	NICAL ENGLISH		
(Approved Syllabus f	for the Academic Yea	ar 2021-22	
S	emester I/II	1	
Subject Code	21CMEGT	IA Marks	30
	1010/2010	in mains	00
Number of Lecture Hours/ Week	03	Exam Marks	70
Total Number of Lecture Hours	50	Exams Hours	03
	Credits -03		
Course Objectives:	1 1 C 1		
To enable the students to learn a	nd apply fundamen	tal principles in	
1 Technical English & Communica	tion by locusing on:		
1. Technical English Vocabula	ary		
2. WITHING SKIIIS			
A Nature and Style of Sensib	le Technical Writing		
5 Writing Technical Reports	and Letters		
Init I	and Detters		
Principles of Scientific Vocabul	larv		
Principles of Scientific voca	bulary: short and s	imple words-	
compact substitutes for we	ordy phrases- redun	dant words	1.0
and expressions-Avoid hac	kneved and stilted r	ohrases.	10
verbosity and incorrect use	e of words	,	hours
• The role of roots in word by	uilding, prefixes and	suffixes,	
confusing words and expressions.			
Unit II			
Writing Skills			
Distinguishing between aca	ademic and persona	l styles of	
writing			10
Use of clauses in technical	phrases and senter	ices	hours
Techniques of Sentence an	d paragraph writing		nouis
 Measuring the clarity of a t 	ext through Fog Ind	lex or Clarity	
Index			
Unit III			
Common Errors in Writing			
 Subject-verb agreement an 	d concord of nouns	pronouns	
and possessive adjectives			
• Common errors in the use	of articles, prepositi	ons, adjectives	10
and adverbs			hours
Punctuation	_		
Technical Guidelines for Co	ommunication		
Avoiding the pitfalls			
Unit IV			
Nature and Style of Sensible Te	echnical Writing		10
Academic Writing Process			hours

• Describing, processes and products	
• Defining, Classifying	
• Effective use of charts, graphs, and tables	
Unit V	I
Report writing and Letter writing	
Writing Technical Reports	10
Précis writing	
Letter Writing	Hours
Essay writing	
COURSE OUTCOMES	
On Completion of the course student will acquire	
1. Ability to understand Scientific vocabulary and use t	them confidently
2. Familiarity with the basic principles of writing clear	sentences and
paragraphs	
3. Ability to write error free simple technical passages	
4. Knowledge of writing different writing styles	
5. Confidence to write letters and technical reports clea	urly and
coherently	
QUESTION PAPER PATTERN	
Section –A	
1. 10 questions carrying one mark each	
2. Five questions each from Units I and III	
Section –B	· · · · · · · · · · · · · · · · · · ·
non-detailed text)	y question from
2. Each question will have two or three sub questions of	covering all the
units	
TEXT BOOKS	
1. Effective Technical Communication by Barun K Mitra	a, Oxford
University Publication	
Non-detailed Text	
1. Karmayogi: A Biography of E Sreedharan by M S Ash	nokan
REFERENCE BOOKS	
1. Communication Skills by Sanjay Kumar & Pushpa L	atha, OUP
2. Study Writing by Liz Hamp-Lyons and Ben Heasly, C	Cambridge
University Press.	
3. Remedial English Grammar by F T Wood, Macmilliar	n 2007
4. Practical English Usage by Michael Swan Oxford U	niversity Press
5. English Collocations in Use by Michael McCarthy &	Felicity O'Dell
6. Effective Technical Communication by Arsahf Rizvi,	UD 0017
7. Essential English Grammar by Raymond Murphy, C	UP, 2017

ENGINEERIN	IG MATHEMATIC	S-II	
(Linear algebra, Laplace t	ransforms & Num	nerical Methods)	
SEM	ESTER - I/II		
Subject Code	21CMMAT2020	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
Cr	edits – 03		
Course objectives:			
To enable students to apply th	e knowledge of M	lathematics in	various
engineering			
fields by making them to learn th	e following'		
1. To develop the use of mat	rix algebra techni	ques that is nee	eded by
engineers for practical a	pplications and a	solve system of	linear
equations	2		
2. To find the inverse and	power of a matr	ix by Cayley-Ha	amilton
theorem and reduce the Qu	ladratic form		
3. To solve initial value proble	ems by using Lapl	ace transforms	1
4. To find the solution of alge	braic/ transcende	ental equations a	nd
also interpolate the functio	ns.		:
5. 10 apply differential equation	ims for approxim	ating the solut	10IIS OI
	ons with mitial col	inditions to its an	alytical
Solving systems of linear equat	ions: Poplz of o m	atrix by eahelon	
form and normal form - Solving	system of homoge	eneous and non	10
homogeneous linear equations	– Gauss Elimir	netion method-	Hours
Jacobi and Gauss-Seidel method	s for solving syste	em of equations	
numerically.	io for borning by bro	on of equations	
Unit -2			
Eigen values and Eigen vectors	. Cavlev-Hamilto	on theorem	
and Ouadratic forms: Eigen valu	ues and Eigen vec	tors and	
properties- Cayley-Hamilton theo	orem (without proc	of) – Reduction	10
to Diagonal form – Quadratic form	ms and nature of	the quadratic	Hours
forms – Reduction of quadratic for	orm to canonical f	orms by	
orthogonal transformation, Diago	nalisation and La	grange's	
reduction			
Unit – 3			
Laplace Transforms: Laplace tra	ansforms – Definit	ion and	
Laplace transforms of some certa	in functions– Shi	fting theorems	
– Transforms of derivatives and is	ntegrals – Unit ste	ep function –	10
Dirac's delta function Periodic fu	nction – Inverse L	aplace	Hours
transforms- Convolution theorem	n (without proof).	/· · · · ·	
Applications: Solving ordinary di	tterential equation	ns (initial value	
problems) using Laplace transfor	ms.		

Unit – 4	
Numerical Methods: Introduction - Method of false position -	
Newton-Raphson method (One Variable) Introduction-Errors in	
polynomial interpolation – Finite differences– Forward differences–	10
Backward differences – Central differences – Relations between	Hours
operators – Newton's forward and backward formulae for	
interpolation – Interpolation with unequal intervals – Lagrange's	
interpolation formula.	
Unit – 5	
Numerical integration, Solution of ordinary differential	
equations with initial conditions: Trapezoidal rule - Simpson's	10
1/3rd and 3/8th rule - Solution of initial value problems by	Hours
Taylor's series- Picard's method of successive approximations-	
Euler's method – Runge -Kutta method (second and fourth order).	
Course outcomes:	
On completion of this course, students are able to,	
1. Develop the use of matrix algebra techniques that is needed	ed by
engineers for practical applications and solve system of	linear
equations (L6)	
2. Find the inverse and power of a matrix by Cayley-Hamilton the	eorem
and reduce the Quadratic form (L3)	
3. Solve initial value problems by using Laplace transforms (L3)	
4. Find the solution of algebraic/ transcendental equations and a	also
interpolate the functions(L3)	
5. Apply different algorithms for approximating the solution	ns of
ordinary differential equations with initial conditions to its anal	lytical
computations (L3).	
Question paper pattern:	
1. Question paper consists of 10 questions.	
2. Each full question carrying 14 marks.	
3. Each full question will have sub question covering all topics ur	nder a
unit.	
4. The student will have to answer 5 full questions selecting on	ne full
question from each unit.	
Text Books:	
1. B. S. Grewal," Higher Engineering Mathematics", Kh	hanna
publishers, 44 th Edition, 2016.	
2. Kreyszig, "Advanced Engineering Mathematics " - Wiley, 9th Ed	dition,
2013.	
3. B.V.Ramana "Higher Engineering M athematics" Tata Mc Graw	<i>w</i> -Hill,
2006	
Reference Books:	
1. Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal R	≀eddy,
"Engineering Mathematics, Volume II" Scitech Publications, 20	017.

- Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering and Science, Tata McGraw Hill Education, 4th Edition, 2018
- 3. M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020.
- 4. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014.

BASIC ELECTRICAL ENGINEERING				
SEN	MESTER I/II			
Common for ECE, CSE, IT/	CE, EEE, ME, ECT	<u>, CST, AI 8</u>	δ ML	,
Subject Code	21CMEET1030 /2030	IA Marks		30
Number of Lecture Hours/Week	3L + 1T	Exam Ma	rks	70
Total Number of Lecture Hours	50	Exam Ho	urs	03
	Credits-03			
COURSE OBJECTIVES:				
This course will enable student to)			
1. Understand basic electrical	circuit operation.			
2. Understand the concept of A	Alternating Voltage a	nd Curren	ıt.	
3. Understand the operation of	of DC machines.			
4. Understand the working of	measuring instrume	ents.		
5. Understand the operation of	f different types of a	c machines	5.	
6. Understand the concept of I	Electrical Safety.			
Unit -1	5			
Basic Electrical Circuits:				
Basic definitions (Electric Charg	e. Current. Electro	Magnet		
Force, Potential Difference: Electri	ic Power and Energy) – types		
of network elements – Ohm's Law	– Kirchhoff's Laws –	series &	Ho	urs –
parallel circuits - network t	heorems (Super	position.	10	
Thevinen's, Norton's, Maximum p	Thevinen's Norton's Maximum nower transfer theorems)			
Unit -2				
AC Fundamentals & Basic Elect	romagnetic Laws:			
Study of AC Voltage and Curren	t. RMS and Average	e Values.		
Three phase Star-Delta conne	ctions. Alternating	Voltage	Ho	urs –
applied to Pure Resistance. Induc	tance. Canacitance	and their	10	
combinations Concept of Powe	r and Power Facto	or in AC		
Circuit				
Concept of Magnetic Field Ma	gneto Motive Force	- (MMF)		
Permeability Self and Mutual Indu	iction Basic Electro	magnetic		
laws	aotion, Babie Breede	magnetie		
Unit – 3				
DC Machines:				
DC Machine -Principle of operat	tion & construction	– emf		
equation- torque equation - spee	d control methods -	- losses	Ho	urs –
and efficiency – brake test, applic	and efficiency – brake test. applications of DC motors. 10			
Unit – 4		•		
AC Machines:				
Single Phase Transformers - Co	onstruction and Or	peration-		
Principles - Classification - Applica	ations-OC & SC test	of single		
phase transformer-regulation & F.	fficiency		Ho	urs –
Three Phase Induction Mo	tors: working n	rinciple-	10	
construction. speed- torque	characteristics-loss	es and	10	

efficiency. Unit – 5 **Electrical Safety:** Electrical Shock and Precautions against it, Treatment of Electric Shock; Concept of Fuses and Their Hours -Classification, Selection and Application; Concept of Earthing. 10 **Course Outcomes:** The student should be able to 1. Understand basic electrical circuit operation. 2. Understand the concept of Alternating Voltage and Current. 3. Understand the operation of DC machines. 4. Understand the working of measuring instruments. 5. Understand the operation of different types of ac machines. 6. Understand the concept of Electrical Safety. **OUESTION PAPER PATTERN:** 1. Question paper consists of 10 questions. 2. Each full question carrying 14 marks. 3. Each full question will have sub question covering all topics under a unit. 4. The student will have to answer 5 full questions selecting one full question from each unit. Text Books: 1. Electrical Circuit Theory and Technology by John Bird, Routledge Taylor & Francis Group. 2. Principles of Electrical Machines by V.K. Mehta & Rohit Mehta, S.Chand and Company Limited. **Reference Books:** 1. Theory and Performance of Electrical Machines by J.B. Gupta, S.K.Kataria & Sons. 2. A Textbook of Electrical Technology – Volume II: AC & DC Machines by B.L.Theraja & A.K. Theraja, S.Chand and Company Limited. 3. Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications, 2nd edition. 4. Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah, TMH Publications 5. Fundamentals of Electrical Engineering by Rajendra Prasad, PHI

Publications, 2nd edition.6. Electrical Technology by Surinder Pal Bali, Pearson Publications.

PYTHON	PROGRAMMING			
SEI	MESTER I/II			
Subject Code	21CMCST2040	IA Marks		30
Number of Lecture Hours/Week	3	Exam Marl	κs	70
Total Number of Lecture Hours	50	Exam Hour	rs	03
	Credits-03			
COURSE OBJECTIVES:				
The Objectives of Python Program	nming are:			
To learn about Python prog	gramming language	syntax, sema	anti	cs,
and the runtime environme	ent.			
• To be familiarized with gen	eral computer progra	amming con	cep	ts like
data types, conditional stat	ements, loops and f	unctions.		
• To be familiarized with gen	eral coding techniqu	es and object	ct-	
oriented programming and	Graphical User Inte	rfaces.		
Unit -1				
Introduction:(TB1:22-30, TE	32:1.1-1.4, TB2:	1.21-1.33)		
Introduction to Python, Program	n Development Cy	cle, Input,		
Processing, and Output, Displa	aying Output with	the Print		
Function, Variables, Reading	Input from the	Keyboard,	Ho	urs –
Operators.			10	
Data Types, and Expression: (T	B1:41-59) Strings As	ssignment,		
and Comment, Numeric Data Ty	ypes and Character	Sets, Type		
conversions, Expressions, Using :	functions and Modu	les.		
Decision Structures and Boolea	n Logic:(TB1:77-85) if, if-else,		
if-elif-else Statements, Nested De	ecision Structures, (Comparing		
Strings, Logical Operators, Boole	an Variables.			
Unit -2				
Control Statement:(TB1:65-72,	TB1:86-91)	~		
Definite iteration for Loop Format	tting Text for output	, Selection		
if and if else Statement Condition	al Iteration, The Wh	ile Loop,	Ho	urs –
Nested Loops.			10	
Strings and Text Files:(TB1:103	3-125) Accessing Ch	aracter		
and Substring in Strings, Data E	ncryption, Strings a	nd		
Number Systems, String Methods	s, Text Files.			
Unit – 3				
List and Dictionaries:(TB1:13	5-145, TB1:153-1	58) Lists,		
Tuples, Sets, Dictionaries.	·	•		
Design with Function:(TE	81:146-149, TB1	:169-190)	Ho	urs –
Functions as Abstraction Mecha	anisms, Problem So	lving with	10	
Top-Down Design, Design with Re	ecursive Functions, (Case Study		
Gathering Information from aFile	e System. Modules :	(TB2:8.1-		
8.5) Modules, Standard Modules.	Packages.	•		

Unit ·	- 4			
File Writin readli	Operations:(TB1:122-123) Reading config files in python, ng log files in python, Understanding read functions, read(), ne() and readlines(), Understanding write functions, write()			
and w	vritelines().Object Oriented Programming:(TB2:5.1-5.20,	Hours –		
TB2:0	5.1-6.17) Concept of class, object and instances,	10		
Const	tructor, class attributes and destructors, Inheritance.			
Desig	n with Classes:(TB1:294-301, TB1:309-330) Objects and			
Class	es, Data modeling Examples, Case Study an ATM.			
Unit ·	- 5			
Error	s and Exceptions:(TB2:7.1-7.8) Syntax Errors,			
Excep define	otions, Handling Exceptions, Raising Exceptions, User- ed Exceptions, Defining Clean-up Actions, Redefined	Hours – 10		
	-up Actions.			
Grap	incal User Interlaces: (IBI:245-288) The Benavior of			
Simp	a CIII Paged Programs Other Hasful CIII Pageurees			
	SE OUTCOMES.			
After	completion of this course student will able to learn			
	Explain the fundamental concepts in the Python language			
$\frac{1}{2}$	Implementation of python iterative statements and strings	· •		
2. 3	Demonstrate python lists dictionaries and functions			
4	Understand the concepts of modules and nackages in python			
5.	Complete coding challenges related to object-oriented programming			
6.	Apply variety of error handling and GUI programming tech	nniques.		
OUES	STION PAPER PATTERN:			
1.	Ouestion paper consists of 10 questions.			
2.	Each full question carrying 14 marks.			
3.	Each full question will have sub question covering all top	ics under a		
	unit.			
4.	The student will have to answer 5 full questions selecti	ng one full		
	question from each unit.			
ТЕХІ	S BOOKS:			
1.	Fundamentals of Python First Programs, Kenneth. A	. Lambert,		
	Cengage.			
2.	Python Programming: A Modern Approach, Vamsi Kurama	a, Pearson.		
REFE	CRENCE BOOKS:			
1.	Introduction to Python Programming, Gowrishankar.S, Ve	ena A, CRC		
_	Press.			
2.	Introduction to Programming Using Python, Y. Daniel Lian	g, Pearson.		
E-RE	SOURCES:			

https://www.tutorialspoint.com/python3/python_tutorial.pdf

ENGINEERING MECHANICS							
SEMESTER I/II							
Subject Code	21CMMET2050	IA Mar	A Marks				
Number of Lecture Hours/Week	3(L)	Exam I	Marks	70			
Total Number of Lecture Hours	50	Exam	Hours	03			
Cred	its - 03						
COURSE OBJECTIVES							
On successful completion of the cours	e, the students sho	ould be a	able to				
1. understand the effect of forces and	nd moments on the	e solid ri	gid bodi	es			
2. analyze static problems using free	e body diagrams b	y consid	lering fri	iction.			
3. locate centroid and calculate mo	3. locate centroid and calculate moment of inertia for different cross						
sections.							
4. calculate velocity and acceleratio	n of particles navi	ng rectili	inear mo	otion			
and rotation							
5. analyze dynamic problems using work energy method and impulse-							
IInit -1			Teac	hing			
			Нот	115			
in mechanics, laws of mechanics, characteristics of force, system of force. Resultant system of forces : Resolution of forces, method of composition of forces, resultant of coplanar concurrent force system, moment of a force and couple. Friction: Frictional force, laws of Coulomb friction, angle of friction, limiting friction and angle of repose, problems on blocks resting on horizontal and inclined planes.				10 Hours			
Unit -2							
Equilibrium of system of forces : Equilibrium of a rigid body subjected to coplanar concurrent forces and coplanar non-concurrent forces, free body diagrams, Lami's theorem, equilibrium of connected bodies.			9 Hours				
Unit – 3							
Centroid and centre of gravity: Ce use of axis symmetry determination of from first principles, centroid of compo Moment of inertia : Moment of inertia theorems of moment of inertia, mome triangle, circle, semi circle, quarter ci moment of inertia of L, T and I sectio inertia radius of gyration mass mom	entre of gravity, ce centroid of simple osite sections. , polar moment of i nt of inertia of rec rcle from first prin ns only. Mass mon	inertia, tangle, neiples, nent of	12 Ho	ours			
Unit-4							
---	----------------	--					
Kinematics: General principles in dynamics, types of motion,							
rectilinear motion, motion curves, motion with uniform velocity,							
motion with uniform acceleration, motion with varying							
acceleration, angular motion, relationship between linear and	10						
angular motions.	10 Hours						
Kinetics: Bodies in rectilinear translation, kinetics of bodies							
rotating about fixed axes, Newton's second law of motion, D-							
Alembert's principle.							
Unit - 5							
Work-Energy Method: Equation of Translation, work energy							
application to particle motion, connected system - Fixed axis	9 Hours						
rotation and plane motion. Impulse momentum method.							
COURSE OUTCOMES							
On completion of this course, students will be able to							
1. determine resultant force and moment for different force s	vstems.						
2. analyse the rigid bodies associated with frictional forces usi	ng conditions						
of equilibrium							
3 locate the centroid / center of gravity and determine the m	oment of						
inertia of plane sections/solids							
4 understand the behaviour of moving bodies in rectilinea	r motion and						
solve kinematic equations of motion curves	i motion ana						
5 solve the problem using work energy method and impulse momentum							
method	e momentum						
OUESTION PAPER PATTERN:							
1 Question paper consists of 10 questions							
2 Each full question carrying 14 marks							
3 Each full question will have sub question covering all tonics	s under a unit						
4 The student will have to answer 5 full questions sele	cting one full						
auestion from each unit	cting one run						
TEXT BOOKS.							
1 SS Bhavikatti and KG Rajashekaranna Engineering Me	chanics?						
N H Dubey Engineering Mechanics Mc Graw Hill 2012	chamesz.						
REFERENCE BOOKS.							
1 F. L. Singer, Engineering Mechanics, Harper-Collins, 1994	L						
2 B Bhattacharva Engineering Mechanics, Oxford Universit	TV Press 2008						
3 A K Taval Engineering Mechanics Umesh Publications 20	012						
4 R K Bansal Engineering Mechanics, Unicshi Publications, 1	906						
5 PK Painut A Text book of Applied Mechanics, Laxmi Public	2990						
6 S Timoshenko and D H Young Engineering Mechanics	a 1th Ed 7						
A Nelson Engineering Mechanics Statics and Dynamics Th	I_{C}						
WFR DEFEDENCES	<i>i</i> u,						
W1 https://nntel.ac.in/courses							
W2. http://learnmeab.com/							
w 2. mup.//icariniteun.com/							

ENGLISH & COMMUNICATION SKILLS LAB Semester I/II				
Subject Code	21CMEGL1050/ 2050	IA Marks	15	
Number of Practical Hours/Week	03	Exam Marks	35	
Total Number of Practical Hours	36	Exam Hours	03	
Credi	ts – 1.5			
 COURSE OBJECTIVES: To enable the students to learn communication skills of Listening, Speaking, Reading and Writing by focusing on: Listening Comprehension Pronunciation Functional English in formal and Informal Situations Interpersonal Communication Skills Presentations 				
List of ExperimentsUNIT IListening ComprehensionUNIT IIPronunciation, Stress, Intonation & RhythmUNIT IIICommon Everyday Situations: Conversations & Dialogues; Communication at Workplace: Job Application letter, Email & ResumeUNIT IVInterpersonal Communication Skills- Formal Presentations				
COURSE OUTCOMES: By the end of the course the students will be able to acquire basic Proficiency in English by practicing the following: 1. Listening Comprehension 2. Pronunciation 3. Dialogues 4. Interpersonal Communication Skills 5. Presentations				
 LEARNING RESOURCES: 1. Interact – English Lab Manual for Undergraduate Students by Orient Black Swan 2. Ted Talks, Interviews with Achievers and select movies 3. Toastmaster's speeches and table topics 4. Book Reviews and movie reviews 5. Exercises in Spoken English Parts: I-III, CIEFL, Hyderabad. 				

6. Oxford Guide to Effective Writing and Speaking by John Seely
7. <u>https://www.ted.com/talk</u>

BASIC ELECTRICAL ENGINEERING LABORATORY

SEMESTER I/II

Common for ECE, CSE, IT/ CE, EEE, ME, ECT, CST, AI & MLSubject Code21CMEEL1070
/2070IA Marks15Number of Lecture Hours/Week3PExam Marks35Total Number of Lecture Hours36Exam Hours03

Credits-1.5

COURSE OBJECTIVES:

This course will enable the student to

- 1. Verify the Kirchoff's laws, network theorems for a given circuit.
- 2. Analyze the performance of DC shunt generator.
- 3. Control the speed of DC motor.
- 4. Predetermine the efficiency DC machine.
- 5. Analyze performance of three phase induction motor.
- 6. Determine the regulation of an alternators.

List of Experiments (Any ten experiments must be conducted)

- 1. Verification of Kirchoff's laws.
- 2. Verification of Thevenin's Theorem.
- 3. Verification of Norton's Theorem.
- 4. Verification of Superposition theorem.
- 5. Verification of Maximum Power Transfer Theorem.
- 6. Speed control of D.C. shunt motor.
- 7. Brake test on DC shunt motor.
- 8. Calibration of wattmeter.
- 9. OC & SC tests on single-phase transformer.
- 10. Brake test on 1-phase Induction motor.
- 11. Brake test on 3-phase Induction motor.
- 12. Study experiment on Ear thing.

COURSE OUTCOMES:

On completion of the course student will be able to:

- 1. Verify the Kirchoff's laws.
- 2. Verify network theorems for a given circuit.
- 3. Control the speed of DC motor.
- 4. Analyze performance of single-phase induction motor
- 5. Analyze performance of three phase induction motor.
- 6. Identify different types of earthings

WORKSHOP PRACTISE LABORATORY					
Subject Code		21CMMEL2080	IA Marks	15	
Number of Lecture	Hours/Week	L (0) +T(0) +P(3)	Exam Marks	35	
Total Number of Le	ecture Hours	36	Exam Hours	3	
	Credits -	- 1.5			
COURSE OBJECT	IVES:				
On completion of	the course students sh	ould be able to			
1. Learn basic	use of hand tools alor	ng with the techni	ques and meth	ıods	
applicable to	the carpentry trade			1 .	
2. Learn basic	use of nand tools alor.	ig with the techni	ques and metr	10 a s	
3 Learn basic	use of hand tools alor	o with the techni	aues and meth	shor	
applicable to	the forging trade		ques and men	1045	
4. Learn basic	use of hand tools alor	ng with the techni	ques and meth	lods	
applicable to	the casting trade	0	1		
5. Learn basic	use of hand tools alor	ng with the techni	ques and meth	ıods	
EXPERIMENTS					
1. Preparation	of T Lap joint using ca	rpentry.			
2. Preparation	of Cross Lap joint usin	g carpentry.			
3. Preparation	of Square fit using mild	d steel specimen.			
4. Preparation	of V fit using mild stee	l specimen.			
5. Conversion of	of round rod to square	rod by forging ope	eration.		
6. Preparation	of S hook by forging op	peration.			
7. Preparation	of green sand mould fo	or a single piece pa	attern		
8. Preparation	of green sand mould fo	or a split piece pat	tern		
9. Preparation	of a Butt joint using ar	rc welding			
10. Preparation	of a Lap joint using a	rc Welding			
ADDITIONAL EXP	ERIMENTS	0			
1. Preparation of	of electrical wiring com	nections using wir	ring (one lamp		
controlled by	one switch)				
2. Preparation of	of house wiring (stair c	ase wiring)			
COURSE OUTCOM	IES:				
On successful com	pletion of this course,	the students will	be able to		
1. perform the je	oinery work of wooden	pieces using carp	entry.		
2. perform the j	oinery work of metallic	pieces using fittin	ıg.		
3. produce the r	equired shaped metall	ic products using	black smithy.		
4. make the gre	en sand moulds using	different patterns	5		
5. Iabricate diffe	rent components usin	g weiaing.			

ENVIRO	IMENTAL SCIENCE			
Subject Code	21CMCHN1090/2090	IA Marks		30
Number of Lecture Hours/Week	2	Exam Mar	ks	70
Total Number of Lecture Hours	32	Exam Hou	rs	03
	Credits – 00			
COURSE OBJECTIVES:				
The objectives of this course, help	the students to			
1. Acquire knowledge on global	l environmental challeng	ges.		
2. Learn different types of natu	ral resources			
3. Create awareness on biodive	ersity and ecology.			
4. Gain scientific knowledge or	n environmental pollutio	n		
5. Acquire knowledge on wate	er conservation method	s and envi	ronme	ental
legislation				
Module -1				
MULTIDISCIPLINARY NATURE O	F ENVIRONMENTAL S	TUDIES		
Environment - Definition, Introd	uction - Scope and Im	portance -	Hou	:s –
Global environmental challenges,	global warming & climat	e change -	6	
Acid rains, ozone layer depletion -	Role of Information Tec	hnology in		
Environment and human health.				
Module -2				
NATURAL RESOURCES				
Renewable and non-renewable re	sources – Natural reso	urces and		
associated problems –				
Forest resources – Use, deforestat	ion - Timber extraction	– Mining,		
dams and other effects on forest a	nd tribal people	1. 1		
Water resources – Floods, drought	, dams – benefits and j	problems	Hou	rs –6
extracting and using mineral resources		effects of		
Food resources: Effects of moder	n agriculture - fertilizer	-nesticide		
problems water logging entroph	nication biological mag	-pesticide		
and salinity.	incation, storogreat mag	Simouton		
Energy resources: Renewable and	non-renewable energy r	esources		
Role of an individual in conservation	on of natural resources.			
Module – 3				
ECOSYSTEM AND BIODIVERSIT	Y			
Ecosystem - Concept of an ecosys	stem Structure and fu	nction of		
an ecosystem Producers, consur	ners and decomposers.	- Energy		
flow in the ecosystem - Food chain	is, food webs and ecolog	ical	Нош	rs –8
pyramids Introduction, types, ch	naracteristic features, st	ructure	11041	.5 0
and function of the Forest and gra	ssland ecosystem.			
Biodiversity - Introduction -	Definition: genetic, sp	ecies and		
ecosystem diversity. – Value of	biodiversity: consum	ptive use,		
productive use, social, ethical an	nd optional values - Ho	ot-spots of		

biodiversity - Threats to biodiversity: habitat loss - Endangered and	
endemic species of India – Conservation of biodiversity: In-situ and	
Ex-situ conservation of biodiversity.	
Module – 4	
ENVIRONMENTAL POLLUTION	
Definition, Cause, effects and control measures of :	
a. Air pollution	
b. Water pollution	
c. Soil pollution	Hours –6
d. Noise pollution	
e. Nuclear hazards	
Solid waste Management: Causes, effects and control measures of	
urban and industrial wastes - Role of an individual in prevention of	
pollution.	
Module – 5	
SOCIAL ISSUES AND THE ENVIRONMENT	
Urban problems related to energy -water conservation, rain water	
narvesting, Resettlement and renabilitation of people its problems	Hours –6
and concerns. Environment Protection Act - Air (Prevention and	
Control of Pollution) Act. – water (Prevention and control of Pollution)	
COURSE OUTCOMES.	
On completion of the course student will be able to	
1 Obtain knowledge on global warming & climate change Acid rai	ine
azone lover depletion	1115,
2 Preserve several natural resources	
3 Summarize the concept of ecosystem	
4 Control different types of pollution	
5 Understand social issues and environmental legislation	
OUESTION PAPER PATTERN:	
1. Question paper consists of 10 questions.	
2. Each full question carrying 14 marks.	
3. Each full question will have sub question covering all topics und	er a unit.
4. The student will have to answer 5 full questions selecting one full	question
from each unit.	_
TEXT BOOKS:	
1. E. Bharucha (2003), "Environmental Studies", University Publis	shing
Company, New Delhi.	
2. J.G. Henry and G.W. Heinke (2004), "Environmental Science and	d
Engineering", Second Edition, Prentice Hall of India, New Delhi.	
3. G.M. Masters (2004)" Introduction to Environmental Engineering	g and
Science". Second Edition. Prentice Hall of India. New Delhi	

REFERENCE BOOKS:

- 1. Text Book of Environmental Studies by Deeksha Dave & P. Udaya Bhaskar, Cengage Learning.
- 2. Environmental Studies by K.V.S.G. Murali Krishna, VGS Publishers, Vijayawada.
- 3. Environmental Studies, P.N. Palaniswamy, P. Manikandan, A. Geeta and K. Manjula Rani, Pearson Education, Chennai.

COURSE STRUCTURE AND SYLLABUS SITE-21 REGULATIONS

For II B.Tech. III Semester Mechanical Engineering

S. No.	сс	Course Code	Course Title	L	Т	Р	С
1	BSC	21CMMAT3010	Engineering Mathematics -III (Vector Calculus and Complex Analysis)	3	0	0	3
2	ESC	21MEMET3020	Materials Engineering	3	0	0	3
3	PCC	21MEMET3030	Mechanics of Solids	3	0	3	3
4	PCC	21MEMET3040	Thermodynamics	3	0	0	3
5	PCC	21MEMET3050	Fluid Mechanics and Fluid Machines	3	0	3	3
6	ESC	21MEMEL3060	Mechanics of Solids &Materials Lab	0	0	3	1.5
7	PCC	21MEMEL3070	Fluid Mechanics and Fluid Machine s Lab	0	0	3	1.5
8	SOC	21MEMES3080	Computer Aided Engineering Drawing and Drafting (CAEDP)	1	0	2	2
9	MC	21MEECN3090	Basic Electronics Engineering	3	0	0	0
			Total	19	0	14	20

II B. Tech. III Semester Proposed Course Structure for the Regulation SITE 21

ENGINEERING MATHEMATICS-III				
(Vector Calculus and Complex analysis)				
SEME	CSTER - III			
Subject Code	21CMMAT3010/20	IA Marks	30	
Number of Lecture Hours/Week	3	Exam Ma	irks 70	
Total Number of Lecture Hours	50	Exam Ho	urs 03	
	Credits – 03			
COURSE OBJECTIVES:				
1. To Interpret the physical meaning of	of different operators	such as gr	adient, cur	
and divergence.				
2. To Estimate the work done against	a field, verify integra	1 theorems	3.	
3. To apply Cauchy-Riemann equa	tions to complex fu	inctions i	n order to	
determine whether a given continu	ious function is analy	tic		
4. To find the differentiation and in	ntegration of comple	ex function	ns used ir	
engineering problems.				
5. To make use of the Cauchy residue	e theorem to evaluate	certain in	tegrals.	
Unit -1				
Vector Differentiation: Gradient	– Directional deri	vative –	10	
Divergence – Curl - Scalar Potential.				
Unit -2				
Vector Integration: Line integral - W	'ork done – Area - Su	rface and		
volume integrals - Vector integral theorems: Greens, Stokes and			10	
Gauss Divergence theorems (without proof) and problems on above				
theorems.				
Unit – 3				
Function of a complex variable				
Introduction –continuity –differentiab	ility- analyticity – pro	operties –	10	
Cauchy –Riemann equations in Car	tesian and polar coo	rdinates.		
Harmonic and conjugate harmonic f	unctions – Milne – T	hompson		
method.				
Unit – 4				
Integration and series expansions				
Complex integration: Line integral -	- Cauchy's integral	theorem,		
Cauchy's in integral formula, gene	eralized integral form	nula (all	10	
without proofs) Radius of convergence	– expansion in Taylo	r's series,		
Maclaurin's series and Laurent series	•			
Unit – 5				
Singularities and Residue Theorem				
Zeros of an analytic function, Sin	gularity, Isolated sir	ngularity,		
Removable singularity, Essential sing	ularity, pole of order r	n, simple		
pole, Residues, Residue theorem, Calc	ulation of residues, R	esidue at	10	
a pole of order m, Evaluation of real	definite integrals: In	tegration		
around the unit circle, Integration are	ound semi-circle.			

COURSE OUTCOMES:

On completion of this course, students are able to

- 1. Interpret the physical meaning of different operators such as gradient, curl and divergence(L5)
- 2. Estimate the work done against a field, and verify integral theorems (L5)
- 3. apply Cauchy-Riemann equations to complex functions in order to determine whether a given continuous function is analytic (L3)
- 4. find the differentiation and integration of complex functions used in engineering problems(L3)
- 5. Make use of the Cauchy residue theorem to evaluate certain integrals (L3)

QUESTION PAPER PATTERN:

Question paper consists of 10 questions.

- 1. Each full question carrying 14 marks.
- 2. Each full question will have sub question covering all topics under a unit.
- 3. The student will have to answer 5 full questions selecting one full question from each unit.

TEXT BOOKS:

1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.

2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

REFERENCE BOOKS:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.

2. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

3. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 9th edition,

4. N.P.Bali and Manish Goyal, "A text book of Engineering mathematics", Laxmi publications, 7th Edition.

5. H.K. Dass and Er. Rajnish Verma, "Higher Engineering Mathematics", S.Chand publishing, 1st edition, 2011.

		-		
MATERIALS ENGINEERING				
	SEMESTER-III	τ. 1	1	20
Subject code	21MEMET3020	Internal mar	'KS	30
Number of lecture	3(L)	External ma	rks	70
nours/week	50	D		02
Total No OI lecture nours	50 Oradita 02	Exam nours		03
COURSE OF IECTIVES.	Creatts-03			
COURSE OBJECTIVES:				
1 Classify different bonds in so	ide and understand o	motallization	of the	metala
for the formation of the solid	solutions and allow nh			metais
2 Understand about phase diag	roms to identify the n	umber and th	oir vor	intions
of phases in Metallographic S	tructure			lations
3 Recognize the property requ	irements of a given a	application ar	nd suia	voest a
suitable ferrous and non-ferro	ous metal and their all	lovs	iu sug	gest a
4. Understand about various h	eat treatment process	es and its m	icrostr	ucture
formation.	cat troutment process		1010001	ucture
5. Understand the need for dif	ferent polymers, cera	mics and con	nposite	es and
their uses in the engineering	field.			
Unit-1			Но	urs
Structure of metals: Bonds	in Solids – Meta	llic bond -		
crystallization of metals, grain and grain boundaries, effect of grain				
boundaries on the properties of metal / alloys – determination of				
grain size.				8
Constitution of alloys: Necessity of alloying, types of solid				
solutions, Hume Rothery's ru	ales, intermediate al	loy phases,		
ductility, resilience, toughness and elastic recovery				
Unit-2				
Phase Diagrams: Methods	of construction of	equilibrium		
diagrams, Isomorpous alloy s	ystems, equilibrium	cooling and		
heating of alloys, lever rule, eu	tectic systems, congru	lent melting		
intermediate phases, peritectic	reaction Transforma	tions in the	1	.0
solid state – allotropy, eutectoid	, peritectoid reactions	, phase rule,		
relationship between equilibri	um diagrams and p	properties of		
alloys. Study of important binar	y phase diagrams of F	e-Fe₃C.		
Unit-3			[
Cast Irons: Structure and prop	erties of white cast iro	n, malleable		
cast iron, grey cast iron, sphere	roid graphite cast iron	n, alloy cast		
irons.		•		
Non-ferrous metals and alloys	: Classification of stee	ls, structure	1	12
and properties of plain carbon	steels, low alloy stee	eis, Hadfield		
manganese steels, tool and die	sieels. Structure and	properties of		
copper and its alloys, Aluminui	n and its alloys, litar	num and its		
anoys				

Unit-4	
Heat Treatments: Annealing, normalizing, hardening, TTT	
diagrams, tempering, hardenability, surface-hardening methods	
(carburizing, carbo-nitriding, cyaniding, induction hardening and	10
flame hardening), age hardening treatment, and cryogenic	
treatment of alloys. vacuum and plasma hardening.	
Unit-5	
Ceramics, Polymers and composites: Crystalline ceramics,	
glasses, cermets, abrasive materials, nano materials –properties	
and applications. Classification, properties and applications of	10
composites, Reinforced materials, fiber reinforced materials, metal	
and applications of polymore	
1 understand the basic crystal structures and their relationship w	with the
properties	
2. Identify the phases, present in different alloy systems by analyz	ing the
phase diagrams	
3. understand the structure and properties of cast iron and nonfer	rous metals
and alloys	
4. Analyze various heat treatment process to change in physical physical process to change in physical physical process to change in physical ph	coperties in
metals	
5. Student is able to Know the structure and properties of differen	t polymers,
ceramic and composite materials	
QUESTION PAPER PATTERN:	
1. Question paper contains 10 questions, 2 from each course outco	tion from
2. The student must answer 5 full questions by selecting one ques	
3 All question carries 14 marks each	
4 Fach full question will have subquestion covering all topics und	er a course
outcome	
TEXT BOOKS:	
1. Introduction to Physical Metallurgy, Sidney H. Avener, McGraw	4i11
2. Essential of Materials Science and Engineering, Donald R. Askel	and.
Thomson	
3. Materials Science and Metallurgy, R.B.Choudary, Khanna Public	shers
REFERENCE BOOKS:	
1. Material Science and Metallurgy – V.D.Kodgire and S.V.Kod PublishingHouse	gire, Everest
2. Materials Science and Engineering - Callister & Baalasubrahma	nyam, Willey
publications	
3. Material Science for Engineering Students, Fischer, Elsevier Pub	olishers

MECHANICS OF SOLIDS SEMESTER - III				
Subject Code	21MEMET3030	Internal Marks	30	
Number of Lecture Hours/Week	3(L)	External Marks	70	
Total Number of Lecture Hours	50	Exam Hours	03	
	Credits – 03			
Course Objectives: Stu	dents should be able to			
1. Calculate the stress	and strain developed in a	any structural memb	er due to	
applied external load				
2. Analyze the principa	al stress and principal st	train at a point of a	stressed	
member and draw s	hear force diagram and	bending moment dia	gram for	
different types of bea	ms under various loading	and support condition	ns	
3. Analyze shear stress	distribution in solid me	mbers and Determin	e section	
modulus for various	beam cross-sections			
4. Calculate the slope, o	deflection and torsion at a	specified point of a b	eam and	
design shafts subject	ed to different loads.			
5. Analyze thin and thic	ek shells under different p	ressure conditions		
Unit -1			Hours	
Introduction: Stress a	and strain definitions, t	ypes of stresses and	d	
strains, elasticity and p	lasticity. Hooke's law, stre	ess-strain diagrams fo	r 10	
engineering materials, n	odulus of elasticity. Poiss	on's ratio, relationshi	p	
between elastic constan	ts, linear and volumetric s	trains, bars of uniform	n	
strength, temperature s	tresses, compound bars.			
Unit -2	• • • • • • • •		<u>c</u>	
Compound stresses, pr	rincipal stresses and stra	ains. Mohr's circle c		
stresses			10	
Beams: Shear force and	bending moment; relation	ship between intensit	У	
of loading, shear force at	nd bending moment; bend	ing moment and shea	r	
force diagrams for canti	lever, simply supported be	eams.		
Unit – 3				
Theory of Bending: Si	mple theory of bending, i	moment of resistance	,	
modulus of section.			10	
Snear Stresses in Bean	ns: Distribution of shear's	tresses in rectangulai	,	
triangular, circular, I and I-sections.				
Init 4				
Slopes and Deflection	ne. Slope and deflectiv	on meggiirements c	.f	
contilever simply our	morted beams with Ma	an incasuitintints (
integration methods sul	piected to point loads and	uniformly distribute	4	
loads	bjected to point loads and	. annormy aistribute	<u> </u>	
Torsion. Derivation of	torsion formula for circu	ilar section torsions	1	
stresses angle of twist	nower transmission effect	t of combined bendin	σ	
and torsion.				

Unit – 5
Cylinders: Stresses in thin and thick cylinders with internal and
external pressures. Hoop and longitudinal stresses in cylinders, stresses 10
in compound cylinders.
Course outcomes:
On completion of this course, students able to
1. Estimate the stress and strain developed in any structural member due to
applied external load.
2. Analyze the principal stress and principal strain at a point of a stressed
members and draw shear force diagram and bending moment diagram for
different types of beams under various loading and support conditions
3. Analyze shear stress distribution in solid members and calculate section
modulus for various beam cross-sections
4. Calculate the slope, deflection and torsion at a specified point of a beam
under different loads
5. Analyze thin and thick cylinders under different boundary conditions
QUESTION PAPER PATTERN:
1. Question paper contains 10 Questions, 2 from each course outcome. The
student must answer 5 full questions by selecting one question from each
course outcome (Internal Choice)
2. All questions carry 14 marks each
Each full question will have sub question covering all topics under a course
outcome
TEXT BOOKS
1. S. S. Bhavikatti, Strength of Materials, Second Edition, Vikas Publishing
House (P) Ltd., New Delhi, 2002
2. R.K. Rajput, Strength of Materials, Revised Edition, S. Chand & Co., New
Delhi, 2007
REFERENCES BOOKS
1. R.K. Bansal, Introduction to Strength of Materials, Laxmi Publications, 2004
2. B.C. Punmia, A. K.Jain, and A. K. Jain, Strength of Materials and Theory of
Structures, Vols. I & II, XIEdition, Laxmi Publications (P) Ltd, New Delhi,
2002

2002.3. E. J. Hearn, Strength of Materials, Pergamon Press, Oxford, 1997

THER	MODYNAMICS			
SEI	MESTER III	1		
Subject Code	21MEMET3040	IA Mar	rks	30
Number of Lecture Hours/Week	3(L)	Exam	Marks	70
Total Number of Lecture Hours	50	Exam	Hours	03
Cr	edits – 03			
COURSE OBJECTIVES: Enable the	students to			
1. Gain the knowledge on the fundar scales.	nentals of thermodyn	amics a:	nd temp	erature
 Apply First law of thermodynamic Understand the direction of second 	cs to various thermal and law of thermody	enginee namics	and con	icept of
increase in entropy of universe.		_		
4. Develop an idea on properties dur	ing various phases of	pure su	ibstance	s using
steam tables, Mollier chart and p	sychometric charts.	1 1	1	
5. Acquire the knowledge of therm	lodynamics to air st	andard	cycles,	vapour
Init _1	gas mixtures.		Терс	hing
			Ho	urs
Introduction: Basic Concepts Fi	undamentals - Svs	tem &	110	uis
Control volume; Property, State & differentials; Work - Thermodyn examples; Displacement work; Path o work and illustrations for simple p work. Temperature, Definition of the law; Temperature scales; Various Th Unit -2 First Law of Thermodynamics: De	Process; Exact & I amic definition of dependence of displace processes; various fo rmal equilibrium and nermometers.	inexact work; cement rms of Zeroth	Hours	s – 10
heat/work interaction in systems- First Law for Cyclic & Non- cyclic processes; Concept of total energy-Demonstration as a property; Various modes of energy, Internal energy and Enthalpy. First Law for Flow Processes - Derivation of general energy equation for a control volume; Steady state steady flow processes including throttling; Examples of steady flow devices; Unsteady processes; examples of steady and unsteady, first law applications for system and control volume. Compressibility charts- Properties of two-phase systems.				s – 10
Unit – 3				
Second law of Thermodynamics: reverse heat engines; Definitions of t Kelvin-Planck and Clausius stateme process; Internal and external in Absolute temperature scale. Clausius inequality: Definition of e entropy is a property: Principle	Definitions of dire thermal efficiency and ents; Definition of rev reversibility; Carnot ntropy; Demonstration of increase of efficiency	ct and d COP; versible cycle; on that ntropy:	Hours	s – 12

Illustration of processes in T-S coordinates:	
Irreversibility and Availability Availability function for	
systems and Control volumes undergoing different processes	
Second law analysis for a control volume and energy balance	
equation	
linit – 4	
Pure Substance: Definition of Pure substance - Const	
temperature and Const. pressure heating of water. Definitions of	
saturated states: P-v-T surface: Use of steam tables and R134a	
tables: Saturation tables: Superheated tables: Identification of	Hours – 08
states & determination of properties. Mollier's chart.	
Determination of entropy from steam tables	
Unit-5	
Mixtures of Perfect Gases: Ideal Gases and ideal gas mixtures.	
Real gases and real gas mixtures and Basics of compressible	
flow.	
Thermodynamic Cycles: Otto, Diesel, Dual Combustion cycles,	
Sterling Cycle, Atkinson Cycle, Ericcson Cycle, Lenoir Cycle -	
Description and representation on P-V and T-S diagram,	Hours – 10
Thermal Efficiency, Mean Effective Pressures on Air standard	
basis - comparison of Cycles. Brayton and Rankine cycles -	
Performance Evaluation-improving methods – combined cycles,	
Bell- Coleman Cycle, Vapour compression cycle-performance	
Evaluation.	
COURSE OUTCOMES:	
On completion of this course, students should be able to:	
1. Identify type of thermodynamic systems in the energy perspec	ctive.
2. Solve the practical thermodynamic problems by applying first	law and steady
flow energy equation.	
3. Analyze the problems on heat engines, refrigeration and entre	opy by applying
direction of second law and illustrate the concept of entropy b	by using second
law of thermodynamics.	
4. Calculate the thermodynamic properties of the pure substance	es.
5. Measure the performance of air standard cycles and vapor p	ower cycle and
analyze the properties of gas mixtures.	
QUESTION PAPER PATTERN:	
1. Question paper contains 10 Questions, 2 from each course	e outcome. The
student must answer 5 full questions by selecting one ques	stion from each
course outcome	
2. CO1- CO5 questions carries 14 marks each.	under a course
outcome	under a course
1 Engineering Thermodynamics DK Nag AthEdn TMU	
2 Fundamentals of Thermodynamics, Sonntag R F Borgnalz	ke C and Van
2. Fundamentals of mermouynamics- Solintag, R. E. BOIgliak	nc, c. and vall

Wylen, G. J, 2003, 6th Edition, John Wiley and Sons.

REFERENCE BOOKS:

- 1. Engineering Thermodynamics Jones & Dugan PHI
- 2. Thermodynamics An Engineering Approach with student resources DVD Y.A.Cengel & M.A.Boles , 6thEdn McGraw Hill
- 3. Basic Engineering Thermodynamics A.Venkatesh Universities press.
- 4. An Introduction to Thermodynamics Y.V.C.Rao Universities press.
- 5. Engineering Thermodynamics P.Chattopadhyay Oxford Higher Edn Publ.
- 6. Engineering Thermodynamics D.P.Misra, CengagePubl.

FLUID MECHANICS AND FLUID MACHINES			
SEM	IESTER - III		
Subject Code	21MEMET3050	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
Cr	edits – 03		
1. Understand the fundamental pro	perties of fluid and	calculate fluid p	ressure
using the manometer.			
2. Apply the differential conservation	n equations of mass	, momentum, and	energy
to fluid flow problems.			
3. Evaluate major and minor losses	s in pipes and also	discuss boundar	y layer
concepts.			
4. Solve problems on the turbo mac	chines like turbines	using analytical 1	method
and velocity triangles.			
5. Discuss the Classification and we	orking principles of	pumps and evalu	ate the
performance of hydraulic machin	les.		
Unit -1			Hours
Fluids: Definition of fluid, Fluid p	properties, Atmospl	neric gauge and	
vacuum pressure – measurement of	pressure. Manome	ters- Piezometer,	10
U-tube, inverted and differential ma	nometers. Pascal's	law, hydrostatic	
law. Buoyancy, forces on submerged	l bodies, stability of	floating bodies.	
Unit -2			
Fluid Kinematics: Introduction, flow types. Equation of continuity for			
one dimensional flow. Stream line, p	ath line and streak	lines and stream	
tube. Stream function and velocity p	otential function.		10
Fluid Dynamics: surface and boo	dy forces -Euler's	and Bernoulli's	
equations for flow along a stream	line, momentum e	equation and its	
applications, force on pipe bend.			
Unit – 3			
Closed Conduit Flow: Reynold's exp	periment- Darcy We	isbach equation,	
Minor losses in pipes- pipes in serie	s and pipes in para	llel- total energy	
line hydraulic gradient line.			10
Basics of Turbo Machinery: Hydro	odynamic force of je	ets on stationery	10
and moving flat, inclined, and curve	d vanes, jet striking	centrally and at	
tip, velocity diagrams, work done an	d efficiency, flow ov	er radial vanes.	
Unit – 4			
Turbines: Hydraulic Turbines: clas	sification of turbin	es, Working and	
efficiencies of Pelton wheel, Francis	and Kaplan turbine	es. Importance of	
Draft Tube.			10
Hydraulic Quantities: Unit and speci	ific quantities, char	acteristic curves,	10
governing of turbines, selection of ty	pe of turbine, cavita	tion, surge tank,	
water hammer.			
Unit – 5			
Pumps: Centrifugal Pumps: Clas	sification, working	, work done –	10

manometric head losses and efficiencies- specific speed- pumps in series and parallel performance characteristic curves, cavitation & NPSH. **Reciprocating Pumps:** Working, Discharge, slip, indicator diagrams.

Course outcomes:

- 1. Demonstrate various properties of fluids, pressure measurement devices and their applications.
- 2. Identify the kinematics and dynamics properties of fluids flowing in different conditions and its effects on the bodies.
- 3. Estimate the effect of various losses in fluids due to flowing and obstructions understand using the concepts of pipe losses and Boundary layer theory.
- 4. Analyze the performance of hydraulic turbines, unit and specific quantities based on the design by applying the knowledge of turbo machinery using analytical methods and velocity triangles.
- 5. Analyze the performance of various hydraulic pumps based on workings and design.

QUESTION PAPER PATTERN:

- 1. Question paper contains 10 Questions, 2 from each course outcome.
- 2. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 3. All questions carries 14 marks each
- 4. Each full question will have sub question covering all topics under a course outcome

TEXT BOOKS

- 1. Hydraulics, fluid mechanics and Hydraulic machinery Modi and Seth
- 2. Fluid Mechanics and Hydraulic Machines/ RK Bansal/Laxmi Publications (P) Ltd.

REFERENCE BOOKS

- 1. Fluid Mechanics and Hydraulic Machines by Rajput
- 2. Fluid Mechanics & Turbo machinery by Dixon, 7th Edn, Elesvier
- 3. Fluid Mechanics and Machinery by D. Rama Durgaiah, New Age International
- 4. Fluid Mechanics- Fundementals and Applications by Y.A. Cengel, J.M.Cimbala, 6th Edn, McGrawHill
- **5.** Fluid Mechanics and Fluid Power Engineering by D.S. Kumar, Kotaria& Sons.

MECHANICS OF SOLIDS & MATERIALS LAB			
Subject Code	21MEMEL3060	Internal Marks	15
Number of Practical Hours/Week	03	External Marks	35
Total Number of practice Hours	48	Exam Hours	03
Cre	edits – 1.5		
Course Objectives: Students Shoul	d be able to		
1. Conduct Tensile and compression	n test using Universa	l Testing Machine	•
2. Calculate Modulus of rigidity and	d stiffness of the spr	ing using tensile s	spring
tester.			
3. Determine the impact resistance	of the given material	using Impact test	er.
4. Find the RHN & BHN using Rock	well and Brinell Haro	lness testers.	
5. Identify different metallographic s	structures of differen	t ferrous alloys	
List of experiments			
1. Tension test			
2. Compression test			
3. Test on helical Spring to deter	mine the rigidity mo	dulus & stiffness	
4. Torsion Test to determine the	rigidity modulus of a	l shaft	
5. Izod Impact test			
6. Charpy Impact test			
7. Brinell's hardness test			
8. Rock well hardness test			
9. Preparation and study of the	Microstructure of pu	ire metals like Iro	n, Cu
and Al.	1		
10. Preparation and study	of the Microstructu	are of mild steels	s, low
carbon steels, high – C steels.			
11. Study of the micro struc	ctures of cast Irons.		
12. Study of the micro struc	ctures of non-ferrous	allovs.	
13. Study of the micro struc	ctures of heat-treated	l steels	
Course Outcomes: Students will be	able to		
1. Conduct Tensile and compress	sion test using Unive	ersal Testing Mach	ine
2. Calculate Modulus of rigidity	v and stiffness of th	ne spring using t	ensile
spring tester and Torsion teste	er		
3. Determine the impact resistant	nce of the given mate	rial using Impact (tester
4. Find the RHN & BHN using Re	ockwell and Brinell H	lardness testers	

5. Identify different metallographic structures of different ferrous alloys

FLUID MECHANICS & MACHINES LAB			
Subject Code	1EK - III 21MEMEI 2070	IA Mortes	15
Number of Lecture Hours /Week	211111111111111111111111111111111111111	From Morles	35
Tatal Number of Lecture Hours/ week	10	Exam Marks	33
Total Number of Lecture Hours	48	Exam Hours	3
Credi	ts - 1.5	an atudanta al	aall ba
able to:		se, students si	lan be
1. Calculate different parameters such	as coefficient of dis	charge, coeffici	ent of
impact, power, efficiency, etc. of vari	ous experiments.		0110 01
2. Estimate pressure variation in a flow	ving fluid using Ber	noulli's princip	le
applications such as Venturi meter,	Orifice meter.		
3. Compute the head losses in various	diameter pipes.		
4. Calculate different parameters such	as coefficient of imp	pact.	
5. Analyze the working of hydraulic tur	bines and pumps t	heir performan	ce
curves.			
LIST OF EXPERIMENTS	and of Vocationi most		
2. Determination of coefficient of discha	lige of Venturi meter		
2. Determination of coefficient of discl	arge of a pipe lip	e using Turbin	e flow
meter	large of a pipe ini	c using rurbin	
4 Determination of coefficient of disch	arge through an on	en channel usi	ng V –
notch apparatus.	ange through an op	en enamer aor	
5. Determination of friction factor of a r	oipe		
6. Verification of Bernoulli's equation	-P -		
7. Determination of coefficient of impac	t of a jet striking a :	flat vane	
8. Conduct performance test on Pelton	Wheel		
9. Conduct performance test on Francis	s turbine		
10. Conduct performance test on sing	gle stage Centrifuga	l Pump	
11. Conduct performance test on Re	ciprocating Pump	_	
ADDITIONAL EXPERIMENTS			
1. Conduct performance test on Kaplar	n turbine		
Course Outcomes: On successful comp	letion of the course	, students will k	be able
to			
1. Calculate different parameters such	as coefficient of dis	scharge, coeffic	ient of
impact, power, efficiency, etc. of varie	ous experiments.		
2. Estimate pressure variation in a flow	ing fluid using Berr	noulli's principl	e
applications such as Venturi meter, (Orifice meter.		
3. Compute the head losses in various (nameter pipes.	a at	
4. Calculate ullierent parameters such	as coefficient of imp	act.	
curves.	onico and pumps u		

COMPUTER AIDED ENGINEERING DRAWING AND DRAFTING (Skill Oriented Course)

SEMESTER III				
Course Code	21MEMES3080	IA Marks	15	
Number of Lecture Hours/week	1(L)+ 2(P)	Exam Marks	35	
Total Number of Lecture Hours	48	Exam Hours	03	
Credits-2				

COURSE OBJECTIVES:

The student will acquire knowledge

- To enhance the student's knowledge and skills in engineering drawing and to introduce drafting packages and commands for computer aided drawing and modeling.
- 2. To introduce various commands in AutoCAD to draw the geometric entities and to create 2D wire frame models.
- 3. To introduce various commands in AutoCAD to draw the geometric entities and to create 3D wireframe models.
- 4. To create geometrical model of simple solids, machines & machine parts
- 5. To interpret viewpoints and view ports, view point coordinates and views displayed and develop computer aided solid models with isometric and orthographic projections.

COMPUTER AIDED DRAFTING:

- 1. Generation of points, lines, curves, polygons, dimensioning. Development of part drawings for various components in the form of orthographic and isometric. Representation of dimensioning and tolerances, Study of DXE, IGES files
- Types of modeling: object selection commands edit, zoom, cross hatching, pattern filling, utility commands in 2D modeling
- Object selection commands edit, zoom, cross hatching, pattern filling, utility commands in 3D modeling.
- Development of part drawings for various components in the form of orthographic representation of dimensioning and tolerances using wireframe and surface modeling.
- 5. Development of part drawings for various components in the form of isometric representation of dimensioning and tolerances using wireframe and surface modeling.
- View point coordinates and view ports displayed, examples to exercise different options like save, restore, delete, joint, single option.
- COMPUTER AIDED SOLID MODELING: Development of part drawings for various components in the form of isometric representation. PART MODELING: Generation of various 3D models through Pad, revolve, shell, sweep, parent child relation, Boolean operations and various standard translators.
- 8. Development of part drawings for various components in the form of orthographic projections.
- 9. Modeling of simple solids,
- 10. Modeling of Machines & Machine Parts. Assembly drawings: (Any four of the

following using solid model software) Generation of various Parts/assemblies: like Screw Jack, Oldham's Coupling, Foot step bearing, Couplings, knuckle and cotter joints, Crankshaft, Connecting Rod, Piston and Cylinder.

COURSE OUTCOMES:

On completion of the course student will be able to:

- 1. Understand skills in engineering drawing and to introduce drafting packages and commands for computer aided drawing and modeling
- 2. Utilize various commands in AutoCAD to draw the geometric entities and to create 2D wire frame models.
- 3. Interpret various commands in AutoCAD to draw the geometric entities and to create 3D wire frame models
- 4. Construct geometrical model of simple solids, machines & machine parts
- Understand view points and view ports, view point coordinates and views displayed and develop computer aided solid models with isometric and orthographic projections.

BASIC ELECT	RONIC ENGINEERI	NG						
SEN	MESTER III							
Subject Code	21MEECM3090	Internal Ma	irks	30				
Number of Lecture Hours/Week	03	External Mar		External Ma		External Marks		70
Total Number of Lecture Hours	50	Exam Hour	S	03				
Credits – 00								
Course Objectives:								
This course will enable the students	to:							
1. Understand the basics of anal	og electronics circui	ts						
2. Describe the basics of digital ϵ	electronics.							
3. Discuss the concepts of electro	onic communication	s.						
Unit -1	4 4 7 4 1							
Semiconductor Devices and App	lications: Introduc	tion to P-N						
junction Diode and V-I characteris	stics, Half wave and	d Full-wave						
rectifiers, capacitor filter. Zener dioc	le and its characteri	stics, Zener	Hou	irs –				
diode as voltage regulator. Regulated	power supply IC bas	sed on 78XX	T	2				
and 79XX series, Introduction to BJ	T, its input-output a	and transfer						
characteristics, BJI as a single	stage CE amplifier	, irequency						
response and bandwidth.								
	1 • <i>4</i> • T <i>4</i>	1						
operational amplifiers, Op-amp input modes and parameters, Op- amp in open loop configuration, op-amp with negative feedback, study of practical op-amp IC 741, inverting and non-inverting amplifier applications: summing and difference amplifier, unity gain buffer, comparator, integrator and differentiator.			Hou 1	ırs – 2				
Unit – 3								
Timing Circuits and Oscillators : Reapplications as a stable and monofeedback, Barkhausen's criteria for Wein bridge oscillator.	C-timing circuits, IC -stable multi-vibrate oscillation, R-C pha	555 and its ors, positive se shift and	Hour	:s – 8				
Unit – 4								
Digital Electronics Fundamentals: digital signals, Boolean algebra, Symbols, Truth tables, logic express K- map, Logic ICs, half and full add multiplexers, flip-flops, shift registe microprocessor/microcontroller and Unit – 5	Difference between Basic and Universions, Logic simplific ler/subtractor, mult ers, counters, Block their applications.	analog and rsal Gates, cation using iplexers, de diagram of	Hou 1	urs – 0				
Electronic Communication St	vstems: The ele	ements of						
communication system, IEEE frequencies, need modulation schemes, Mobile com concept and block diagram of GSM s	uency spectrum, Tr of modulation, Al nmunication system system.	ansmission M and FM ns: cellular	Hour	:s – 8				
		Total	5	0				

COURSE OUTCOMES:
On completion of the course student will be able to:
1. Understand the basics of semiconductor devices and their applications.
2. Describe the application using Operational amplifier.
3. Discuss the working of timing circuits and oscillators.
4. Understand building block of digital systems.
5. Summarize the basics of Electronic communication system.
OUESTION PAPER PATTERN:
1. Question paper contains 10 Questions, 2 from each course outcome.
2. The student must answer 5 full questions by selecting one question from each
course outcome (Internal Choice)
3 All questions carries 14 marks each
4 Each full question will have sub question covering all topics under a course
outcome
TEXT BOOKS.
1 Integrated Flectronics Jacob Millman C Hallies C D Parilth Tata Ma
Crow Hill 2000
O Lincon Interneted Cincuita D. Dev Chaudhum, New Are Internetional (n)
2. Linear integrated Circuits – D. Roy Choudhury, New Age international (p)
Llu. 2 Divitel Desire Mannie Manne Thind Edition Desures Dechlications
3. Digital Design – M Morris Mano, Third Edition, Pearson Publications.
4. Electronic Communication Systems-George Kennedy,5 th Edition, Tata Mc-
Graw Hill
REFERENCE BOOKS:
1. Electronic Devices and Circuits – K Venkata Rao ,K Rama Sudha, Tata Mc-
Graw Hill.
2. Electronic Devices and Circuits - Salivahanan, Kumar, Vallavaraj, 2 nd
Edition, Tata Mc-Graw Hill.
3. Fundamentals of Logic Design- Charles H.Roth, Jr., 5th Edition, India
Edition

COURSE STRUCTURE AND SYLLABUS SITE-21 REGULATIONS

For II B.Tech. IV Semester Mechanical Engineering

S. No.	сс	Course Code	Course Title	L	Т	Р	Cr
1.	BSC	21 CMMAT 4010	Engineering Mathematics –IV (Fourier series, Applications of PDE and Probability &	3	0	0	3
2.	PCC	21MEMET4020	Applied Thermodynamics	3	0	0	3
3.	PCC	21MEMET4030	Design of Machine Elements - I	3	0	0	3
4.	PCC	21MEMET4040	Production Technology	3	0	0	3
5.	PCC	21MEMET4050	Kinematics of Machinery	3	0	0	3
6.	HSC	21MEMST4060	Engineering Economics and Financial Management	3	0	0	3
7.	PCC	21MEMEL4070	Thermal Engineering Lab	0	0	3	1.5
8.	PCC	21MEMEL4080	Production Technology Lab	0	0	3	1.5
9.	SOC	21MEMES4090	Computer Aided Three- Dimensional Interactive Application (CATIA)	1	0	2	2
10.			Total	19	0	8	23
		H/M	Honors/Minor courses (The hours distribution can be 3- 0-2 or 3-1-0 also)	4	0	0	4

II B. Tech. IV Semester Proposed Course Structure for the Regulation SITE 21

ENGINEERING MATHEMATICS-IV				
(Fourier series, Applications of PDE and Probability & Statistics)				
SEI	MESTER - IV			
Subject Code	21CMMAT4010/20	IA Marks		30
Number of Lecture Hours/Week	3	Exam Marks		70
Total Number of Lecture Hours	48	Exam Hours 03		03
	Credits – 03			
Credits – 03 Credits – 03 Course Objectives: 1. To Find the Fourier series of a periodic functions. 2. To Identify solution methods for partial differential equations that model physical processes 3. To know the Basic Concepts of Probability and corresponding Discrete and Continuous probability distributions 4. To obtain the estimate of a parameter from sample statistic 5. To test the hypothesis. Unit -1 Fourier Series: Periodic functions, Dirichlet's condition, Fourier Series of periodic functions with period 2π and with arbitrary period. Fourier series of even and odd functions, Half range Fourier Hours – 10				
Series.				
Unit -2		0.1.		
of One-dimensional wave, Heat equation.	and two-dimension	al Laplace	HO (urs – 08
Unit – 3				
Discrete random Variables an Random variables -Discrete in Function-Mathematical Expectant Binomial and Poisson distributions Continuous random Variables an Continuous random variables-Dist Continuous distributions: Unifor Normal approximation to Binomial	d Distributions: In random variables-D tion. Discrete dis and their fitting to d a d Distributions: Intr tribution function- E m and Normal dis distribution.	troduction istribution tributions: ata. roduction - xpectation. tributions,	Ho	urs – 10
Unit – 4				
Sampling theory Introduction-Population and sam means and Variance (definition only proof).	nples-Sampling distr 7)-Central limit theore	ibution of m (without	Ho	urs – 10
Unit – 5				
Test of Hypothesis: Introduction-Hypothesis-Null and and Type II Errors-Level of Significa Tests concerning one mean and samples), z test, t-distribution, Te	Alternative Hypothe ance-One tail and two two means (Large st of Goodness of fit	esis-Type I o tail tests- and Small - Tests on	Ho	urs – 10

proportions- z-test.

Course outcomes:

On completion of this course, students are able to

- 1. Find the Fourier series of a periodic functions (L3)
- 2. Identify solution methods for partial differential equations that model physical processes (L3).
- 3. Apply the Concepts of Probability and Find the statistical Parameters of Discrete and Continuous distributions (L3)
- 4. Estimate the properties of population from samples. (L5)
- 5. Design the Components of classical Hypothesis test, Conclude the statistical inferential methods based on small and large samples. (L6)

QUESTION PAPER PATTERN:

- 1. Question paper consists of 10 questions.
- 2. Each full question carrying 14 marks.
- 3. Each full question will have sub question covering all topics under a unit.
- 4. The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

1. Miller and Freund's, Probability and Statistics for Engineers,7/e, Pearson, 2008.

2. S.C.Gupta and V.K.Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan Chand

& Sons Publications, 2012.

3. B.V.Ramana "Higher Engineering Mathematics" Tata Mc Graw-Hill, 2006.

Reference Books:

- 1. Shron L. Myers, Keying Ye, Ronald E Walpole, Probability and Statistics for Engineers and the Scientists,8th edition, Pearson 2007.
- 2. Jay L Devore, Probability and Statistics for Engineering and the Sciences, 8thEdition, Cengage.
- 3. Sheldon M. Ross, Introduction to probability and statistics Engineers and Scientists,4thEdition, Academic Foundation, 2011.
- 4. Johannes Ledolter and Robert V. Hogg, Applied Staistics for Engineers and Physical Scientists, 3rd Edition, Pearson, 2010.

APPLIED THERMODYNAMICS				
SEMES	STER IV			
Subject Code	21MEMET4020	IA Mar	ks	30
Number of Lecture Hours/Week	3(L)	Exam	Marks	70
Total Number of Lecture Hours	50	Exam	Hours	03
Credi	ts - 03			
COURSE OBJECTIVES:				
Enable the students to		• ,	1 /	1
1. Understand the working of various	IC engines and as	sociated	1 system	is such
as lubricating system, cooling syst	tem, fuel injection	n systei	m and i	gnition
2. Describe the working of steam power	plant and their co	mponen	its and e	valuate
the performance and analysis of boil	ers.	1		
3. Classify the steam nozzles and their	performance evaluation	uation.		
4. Sketch the velocity diagrams of	steam turbine	s and	illustra	te the
compounding.				
5. Analyze the performance of gas tu	arbine and expla	in the	working	of air
compressors.				
Unit -1			Teac	hing
			Но	urs
stroke engine- SI & CI engines, Valve and Port Timing Diagrams, Engine systems- Carburetor, Fuel injection systems for CI engines, Ignition, Cooling and Lubrication system.			s – 08	
Vanour Power Cycles: Rankine cycle	Performance eval	uation		
and improving methods	i chormanee eva	uation		
Boilers : Classification working princip	les of L.P. & H.P.	hoilers		
with sketches, mountings and accessor	ies – working prin	ciples.		
boiler horse power, equivalent evaporation	tion, efficiency an	d heat	Hours	s – 12
balance - draught, classification - height	ght of chimney for	r given		
draught and discharge, condition fo	r maximum disc	harge,		
efficiency of chimney – artificial draugh	t, induced and for	ced.		
Unit - 3				
Steam Nozzles: Function of a nozzle – a	applications - type	es, flow		
through nozzles, thermodynamic ana	dysis – assumpt	ions -		
velocity of fluid at nozzle exit-Ideal and	d actual expansio	n in a		
nozzle, velocity coefficient, condition f	or maximum disc	charge,	Hours	s – 08
critical pressure ratio, criteria to deci	de nozzle shape:	Super		
saturated flow, its effects, degree of sup	er saturation and	degree		
of under cooling - Wilson line				
Unit – 4				
Steam Iurbines: Classification and j	volocity diagram	ation -	Uaur	. 10
of friction	velocity diagrafils	, enect	Hours	5-14

of a stage, degree of reaction – velocity diagram - Analysis of team turbines, velocity and pressure compounding of steam urbines Jnit-5 Fas Turbines: Gas power cycles, Brayton cycle, effect of reheat, egeneration and intercooling- Combined gas and vapor power cycles. Compressors: Reciprocating compressors, staging of eciprocating compressors, optimal stage pressure ratio effect of
steam turbines, velocity and pressure compounding of steam urbines Jnit-5 Sas Turbines: Gas power cycles, Brayton cycle, effect of reheat, egeneration and intercooling- Combined gas and vapor power cycles. Compressors: Reciprocating compressors, staging of eciprocating compressors, optimal stage pressure ratio effect of
urbines Jnit-5 Fas Turbines: Gas power cycles, Brayton cycle, effect of reheat, egeneration and intercooling- Combined gas and vapor power cycles. Compressors: Reciprocating compressors, staging of eciprocating compressors, optimal stage pressure ratio effect of effect of eciprocating compressors.
Jnit-5 Sas Turbines: Gas power cycles, Brayton cycle, effect of reheat, regeneration and intercooling- Combined gas and vapor power cycles. Compressors: Reciprocating compressors, staging of eciprocating compressors, staging of eciprocating compressors, optimal stage pressure ratio effect of effect of eciprocating compressors.
Gas Turbines: Gas power cycles, Brayton cycle, effect of reheat, regeneration and intercooling- Combined gas and vapor power cycles.Hours - 10Compressors:Reciprocating compressors, staging of eciprocating compressors, optimal stage pressure ratio effect ofHours - 10
egeneration and intercooling- Combined gas and vapor power cycles. Compressors: Reciprocating compressors, staging of eciprocating compressors, optimal stage pressure ratio effect of
cycles. Compressors: Reciprocating compressors, staging of Hours – 10 eciprocating compressors, optimal stage pressure ratio effect of
Compressors: Reciprocating compressors, staging of Hours – 10
eciprocating compressors, optimal stage pressure ratio effect of
compression of spannar stage pressure ratio, effect of
ntercooling and minimum work for multistage reciprocating
compressors
COURSE OUTCOMES:
On completion of this course, students should be able to:
. Explain various internal combustion engines working principles and analyze
various engine systems.
2. Determine the methods of improving Rankine cycle efficiency and design the
constructional features of various types of boilers.
5. Evaluate critical pressure and other properties of steam in a steam nozzle.
. Compute the efficiency of steam turbines through graphical and analytical
methods.
norformance of different types of compressors
Ouestion paper contains 10 Questions 2 from each course outcome
The student must answer 5 full questions by selecting one question from each
course outcome (Internal Choice)
3. CO1- CO5 questions carries 14 marks each
Each full question will have sub question covering all topics under a course
outcome.
TEXT BOOKS:
. Fundamentals of Thermodynamics, Sonntag, R. E, Borgnakke, C. and Van
Wylen, G. J., 2003, 6th Edition, John Wiley and Sons.
2. Thermal Engineering-R.S Khurmi/JS Gupta/S.Chand.
3. Gas Turbines / V Ganesan/3rd edition, TMH/2016.
REFERENCE BOOKS:
. Heat Engineering – V.P Vasandani and D.S Kumar Metropolitan Book
Company, New Delhi.
2. Thermodynamics and Heat Engines, Volume 2 - R.Yadav - Central book
3. Engineering Thermodynamics, PK Nag 4th Edn. TMH.
I. Thermal Engineering – S. Domkundwar – 5th Edn – Dhanpat Rai publ.
5. Thermal Engineering-P.L.Bellaney/ Khanna publishers.
5. Thermal Engineering- M.L.Mathur-Jain publ.
7. Steam tables by C.P Kodandaraman – New age International.

DESIGN OF MACHINE ELEMENTS-I			
Subject Code	21MEMET4030	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
C	redits – 03		
COURSE OBJECTIVES			
Students will be able to			
1. Understand the customers' nee	ed, formulate the	problem and obse	rve the
behavior of components subjected	ed to loads, differe	nt types of modes of	failure.
2. Gain the knowledge of fluctua	ting stresses, en	durance limit and	fatigue
failure.			
3. Design and analyze permanent	joints (riveted, we	lded, etc.) under cor	icentric
and eccentric loading conditions	8.		
4. Develop the knowledge of design	gning detachable	joints (bolts, cotter	s, etc.)
under various loading condition	s.		
5. Design and analyze coil springs	(compression, ten	sion, torsion) under	various
loads.			
Unit -1			Hours
Introduction: Principles of med strength, rigidity, fracture, wear,	chanical design; and material con	Factor of safety, isiderations; Stress	10
Design : Types of loads, stresses and strain modes of failure. Principal			10
Design : Types of loads, stresses and strain, modes of failure, Principal stresses, theories of failure. Penking theory, Cuests theory, Ven Misses			
theory selection of failure theories			
Init _?			
Ont -2	1		
Strength of Machine Elements: 1.	neoretical stress c	concentration lactor	0
- langue stress concentration la	cior, notch sensi	andurance strength	0
- Goodman's line - Soderberg's line	_ modified Goodr	non's line methods	
- Goodman's line - Soderberg's line		nan s nne methous.	
Unit - 3	and all minute of the	inter nimet less de	
terminalary applifying and fullering	es of fiveled ju	oniciante officiences	
of riveted joints, eccentrically loads	d riveted joints	ed joints, eniciency	
Design of Welded Joints: Weldir	a process merit	s and demerits of	12
welded joints over riveted joints. The	in process, merry	nts weld symbols	14
strength of parallel and fillet w	veld strength of	a welded ioint	
eccentrically loaded welded joints t	welds subjected to	bending moment	
torsional moment.		some momont,	
Unit – 4			

Design of simple machine parts, design of cotter and knuckle joints. Design of Threaded Joints : Forms of screw threads, nomenclature, thread series, designation, power screws, and advantages over v-threads, stress in screwed threads, bolts of uniform strength, empirical relation for initial tightening, eccentrically loaded joints.	10
Unit – 5	
Mechanical Springs:	
Stresses and deflections of helical springs, extension, compression	
springs, springs for fatigue loading, Wahl's stress concentration factor,	10
energy storage capacity – helical torsion springs – co-axial springs, leaf	
springs, Nipping of leaf springs.	<u> </u>
Course our comes:	
On the completion of this course, students are able to	
foilure modes and criteria to observe the behavior of component subjection	ypes of
loads	
2 Define fluctuating stresses endurance limit and fatigue failure	
3. Analyze permanent joints (riveted, welded, etc.) under concentr	ic and
eccentric loading conditions.	
4. Analyze detachable joints (bolts, cotters, etc.) under various	loading
conditions.	
5. Evaluate stiffness, number of coils and length etc., of coil	springs
(compression, tension, torsion) under various loads.	
QUESTION PAPER PATTERN:	
1. Question paper contains 10 Questions, 2 from each course outcome.	
2. The student must answer 5 full questions by selecting one question from each	
course outcome (Internal Choice).	
3. All questions carries 14 marks each.	
4. Each full question will have sub question covering all topics under a	course
1 Machine Design /V Bandari / TMH Publishers	
2 Machine design / NC Pandya& CS Shah/Charotar Publishing Hou	se Pvt
Limited	
REFERENCES BOOKS	
1. Design of Machine Elements / V.M.Faires /McMillan	
2. Machine design / Schaum Series/McGraw Hill Professional	
3. Machine Design / Shigley, J.E./McGraw Hill	

4. Machine Design –Norton/ Pearson publishers
| PRODUC | TION TECHNOLO | DGY | |
|--|-------------------------------|-------------------------|-------|
| S | EMESTER - IV | | |
| Subject Code | 21MEMET4040 | Internal Marks | 30 |
| Number of Lecture Hours/Week | 3(L) | External Marks | 70 |
| Total Number of Lecture Hours | 50 | Exam Hours | 03 |
| | Credits – 03 | | |
| COURSE OBJECTIVES: | | | |
| Enable the students: | | | |
| 1. To understand different castin | g techniques for p | roduct development. | |
| 2. To know about the application | s of special castin | g processes | |
| 3. To understand basic manufact | uring processes o | f welding | |
| 4. To understand the concepts of | advanced welding | g processes for variou | S |
| applications. | | | |
| 5. To select appropriate metal for | ming and plastic [,] | working processes for | a |
| given application. | | | |
| Unit -1 | | | Hours |
| Introduction: Manufacturing pro | cesses and classif | fication. | |
| Casting: Steps involved in mak | ting a casting. P | atterns and Pattern | |
| making: Types of patterns, M | aterials used fo | r patterns, Pattern | 10 |
| allowances. Moulding sand: Mold | ing sand composi | tion, sand properties | 10 |
| and Sand preparation. Core: Con | e sands, Types o | f cores, Core prints, | |
| Chaplets. Principles of Gating, | Gating ratio an | d Design of Gating | |
| systems. | | | |
| Unit -2 | | | - |
| Melting and Solidification of cas | sting: Cupola furi | nace, Solidification of | |
| pure metal and alloys, Short | & long freezing | range alloys. Risers: | |
| Types function and design, Ca | asting designs. | | 10 |
| Special casting processes: Centrifugal, Die and Investment casting. | | | |
| Casting defects-Causes and re | emedies. | | |
| Advanced Casting Techniques: | Stir Casting, Sque | eze casting | |
| Unit – 3 | | | 1 |
| Welding: Introduction, classifica | ation of welding | processes, types of | |
| welded joints and their chara | cteristics. Gas we | lding: Different types | |
| of flames and uses, Oxy-Acet | ylene gas welding | g, metal arc welding, | 10 |
| sub merged arc welding. | | | 10 |
| Advanced weldings: TIG & MI | G welding. Resis | tance welding: Spot | |
| welding, Seam welding, Projec | tion welding, Ups | et welding, and Flash | |
| butt welding. | | | |
| Unit – 4 | | | |
| Special welding processes: Ther | mit welding, Frict | ion welding, Friction | |
| stir welding, Electron beam welding | ng, and Laser bea | m welding. Soldering | 10 |
| and Brazing, Welding defects, cau | ises and remedies | • | |
| Unit – 5 | | | |
| Metal Forming: Nature of plasti | c deformation, He | ot and cold working. | 10 |

Rolling: Principle, Types of rolling mills and products, Forces in rolling and power requirements. Extrusion process, Hot extrusion and cold extrusion, Impact extrusion. Forging, Tools and dies, Forging hammers, Rotary forging. Wire and tube drawings.

Sheet metal forming: Blanking, Bending, Piercing, Stamping, Drawing, Coining, Embossing, Stretch forming, Hot and cold spinning. Blow and Injection moulding.

Course outcomes:

- 1. Students able to understand the knowledge of various casting processes
- 2. Students should be able to identify various casting technique parameters and their design effect on processes.
- 3. Students should be able to understand the equipment to complete specified welding processes efficiently and correctly
- 4. Students should be able to apply knowledge of welding safety standards to both field and factory environments.
- 5. Students should be able to understand the metal forming and sheet metal forming processes and their relevance in current manufacturing industry

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome.
- 2. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 3. All questions carries 14 marks each
- 4. Each full question will have sub question covering all topics under a course outcome

Text Books:

- 1. P.N. Rao, Manufacturing Technology, Vol I, TMH
- 2. Kalpakjian S & Steven RSchmid, Manufacturing Processes for Engineering Materials, 5thEd.PearsonPubl.
- 3. B.S.Raghuwanshi, Workshop Technology, Vol I, Dhanpatrai& Co
- 4. Kalpakjain S.& Steven R Schmid, Manufacturing Engineering and Technology, 4th Ed., Pearson Publ.

Reference Books:

- 1. P C Sharma, Production Technology, S. Chand
- 2. R.K. Jain and S.C. Gupta, Production Technology, Khanna Publishers
- 3. Production Technology, H.M.T. (Hindustan Machine Tools).

KINEMAT	CS OF MACHINE	CRY	
SE	MESTER - IV		
Subject Code	21MEMET4050	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
C	credits – 03		
COURSE OBJECTIVES:			
Students will be able to			
1. Understand the purpose of kine	ematics, Kinemati	c joint and mechan	ism and
to study the relative motion of	parts in a maching	ine without conside	ring the
forces involved.	C 1		1 .1 .
2. Understand various mechani	sms for straigh	t line motion an	d their
applications including steering	mechanism		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
s. Understand the velocity and acc	ples and application	tion of four bor of	gy using
understand the application of sl	ider crank mecha	nism etc. And study	of plane
motion of the body		mom etc. mit study	or plane
4. Understand the theories involve	ed in cams. Furth	er the students are	exposed
to the applications of cams and	their working prin	nciples	onposed
5. Understand gears, power trar	nsmission throug	h different types o	of gears
including gear profiles.		51	0
Unit -1			Hours
MECHANISMS: Elements or Links	- Classification -	- Rigid Link, flexible	
and fluid link – Types of kinematic	pairs – sliding, tu	rning, rolling, screw	
and spherical pairs – lower and hi	igher pairs – close	ed and open pairs –	
constrained motion – completely,	partially or succe	essfully constrained	10
and incompletely constrained .C	rublers criterion	, Grashoff's law,	
Degrees of freedom, Kutzbach	criterion for pl	anar mechanisms,	
Mechanism and machines – classif	ication of machine	es – kinematic chain	
- inversion of mechanism - invers	sions of quadric c	cycle, cham – single	
Init _2			
LOWER PAIR MECHANISM. Fx	vact and approx	imate coniers and	
generated types – Peaucellier Hat	t and Scott Russ	sel – Grasshopper –	
Watt T. Chebicheff and Robert M	echanisms and s	traight-line motion.	10
Pantograph. Conditions for corre	ect steering – D	avis Steering gear.	
Ackerman's steering gear – vel	ocity ratio; Hool	ke's Joint: Single-	
Universal coupling problems	<i>,</i>	0	
Unit – 3			
KINEMATICS: Velocity and acceler	ration – Motion of	a link in machine –	
Determination of Velocity and accel	leration diagrams	- Graphical method	
- Application of relative velocity r	nethod four bar	chain. Velocity and	10
acceleration analysis of for a give	en mechanism, k	Cleins construction,	
Coriolis acceleration, determina	ation of Coriol	is component of	
acceleration.			

Plane motion of body: Instantaneous centre of rotation, centroids and axodes – relative motion between two bodies – Three centres in line theorem – Graphical determination of instantaneous centre, diagrams for simple mechanisms and determination of angular velocity of points	
and links.	
Unit – 4	
CAMS Definitions of cam and followers – their uses – Types of followers	
and cams – Terminology –Types of followers motion: Uniform velocity, Simple harmonic motion and uniform acceleration and retardation. Maximum velocity and maximum acceleration during outward and return strokes in the above 3 cases. Analysis of motion of followers: Roller follower – circular cam with straight, concave and convex flanks.	10
Unit – 5	
GEARS Higher pairs, friction wheels and toothed gears-types – law of gearing, condition for constant velocity ratio for transmission of motion, Form of teeth: cycloidal and involute profiles. Velocity of sliding – phenomena of interferences – Methods of interference. Condition for minimum number of teeth to avoid interference, expressions for arc of contact and path of contact –Introduction to gear Trains, Train value, Types – Simple and reverted wheel train – Epicyclic gear Trains. Methods of finding train value or velocity ratio – Epicyclic gear trains.	10
Course outcomes:	
 To understand the relative motions of different kinematic mechanisms To evaluate different straight line motion mechanisms and steering mechanisms To determine the velocity and acceleration using IC, velocity methods To draw the profiles of cams and followers To know the methodology of gears and its transmission 	g gear
QUESTION PAPER PATTERN:	
 Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from course outcome (Internal Choice) All questions carries 14 marks each Each full question will have sub question covering all topics under a distance of the second second	n each
4. Each full question will have sub question covering all topics under a (course
1. Mechanism and Machine Theory by Ashok G. Ambekar. PHI Publishers	3
2. Theory of Machines – S. S Rattan- TMH	-
REFERENCES:	
1. Theory of Machines Sadhu Singh, PearsonsEdn	
2. Theory of machines and Machinery /Vickers /Oxford	
3. Theory of Machines by Thomas Bevan/ CBS	

ENGINEERING ECONOMIC	S AND FINANCIA	L MANAGEMENT	
Subject Code	21MEMST4060	Internal Marks	30
Number of Lecture Hours/Week	0.3	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
Cre	edits - 03	Exam nours	00
COURSE OBJECTIVES:			
This course will enable the students	to		
1. Understand the concept and natu	ire of Managerial I	Economics and Co	ncept of
Demand and Demand forecasting	[. [.		
2. Analyse the Cost Concepts,	, Cost-Volume-Profi	t Analysis and	Market
structures.		5	
3. Learn different Accounting System	ns, preparation of	Financial Stateme	ents and
Capital Budgeting proposals by u	sing different met	hods.	
Unit -I	-		Hours
Introduction to Managerial Eco	nomics and de	mand Analysis:	
Definition of Managerial Economics	and Scope-Mana	gerial Economics	
and its relation with other sub	jects-Concept of	Demand-Types-	10
Determents-Law of Demand its Exc	eption-Elasticity o	of Demand-Types	
and Measurement- Demand forecast	ing and its Metho	ds.	
Unit –II			
Production and Cost Analysis : Pr	roduction Functio	n-Isoquants and	
Isocost-Law of Variable proport	ions- Cobb-Dou	glas Production	
Function-Economics of Sale-Cost Co	oncepts- Opportun	ity Cost-Fixed vs	10
Variable Costs-Explicit Costs vs In	nplicit Costs- Co	st Volume Profit	
analysis- Determination of Break-Ev	en Point (Simple F	Problems).	
Unit-III			
Introduction To Markets, Pricing	Policies & form	s Organizations	
and Business Cycles: Market	Structures: Perfe	ct Competition,	
Monopoly and Monopolistic and Ol	igopoly – Feature	s – Price Output	
Determination – Methods of Pricing	g: Market Skimm	ing Pricing, And	12
Internet Pricing: Flat Rate Pricing.	Features and Ex	valuation of Sole	
Irader – Partnersnip – Joint Stock C	ompany – State/P	ublic Enterprises	
and their forms – Business Cycles –	Meaning and Fea	tures – Phases of	
Business Cycle			
Unit -IV	anoing Analysis	Introduction to	
Double Entry Systems Preparation	of Financial Stat	ements Analysis	
and Interpretation of Financial S	tatements_Ratio	Analysis (Simple	10
Problems)	tatements-Ratio A	marysis (Simple	
linit-V			
Canital and Canital Budgeting. Can	vital Budgeting. Ma	aning of Capital_	
Capitalization-Meaning of Capita	al Budgeting-Nee	d for Canital	
Budgeting-Techniques of Capital F	Budgeting-Traditio	nal and Modern	08
Methods.			

COUR	SE OUTCOMES:
On cor	npletion of the course student will be able to:
1. 1	Equipped with the knowledge of managerial economics and estimating demand for a product
2. 1	Examine the Production Concept and familiar with the concepts of iso- quants, iso-cost lines and MRTS
3. 1	Predict the cost of production and its relevance to managerial decision making
4.]	Differentiate various the Markets and Pricing methods along with Business Cycles.
5. 1	Prepare Financial Statements along with Analysis
6. <i>.</i>	Analyse and interpret various investment project proposals with the help of Capital Budgeting techniques.
QUES'	TION PAPER PATTERN:
1. (Question paper contains 10 Questions, 2 from each course outcome.
2. 7	The student must answer 5 full questions by selecting one question from
(each course outcome (Internal Choice)
3. 4	All questions carries 14 marks each
4.]	Each full question will have sub question covering all topics under a course
	outcome
TEXT	BOOKS:
1. 1	Dr. A. R. Aryasri – Managerial Economics and Financial Analysis, TMH 2011.
2.]	Dr. B. Kuberudu and Dr. T. V. Ramana: Managerial Economics & Financial Analysis, Himalaya Publishing House 2011.
REFE	RENCE BOOKS:
1.]	Dr. P. Vijaya Kumar & Dr. N. Apparao Management Science Cengage,
	Dellii, 2012. S. A. Siddiaui & A. S. Siddiaui, Managarial Economics and Einancial.
۷. ۱	Analysis New Age International Publishers 2012
2 1	Manitha Agernial: Managerial Economical Decrean Dublications 2011
J. WED E	Vanitha Agarwar : Manageriar Economics, Pearson Publications 2011.
	KEFERENCED:
1.]	CTURE_NOTES_1.pdf
2. 1	https://www.edx.org/course/introduction-to-managerial-economics

THERMA S	L ENGINEERING LAB EMESTER - IV		
Course Code	21MEMEL4070	IA Marks	15
Number of Lecture Hours/week	3(P)	Exam Marks	35
Total Number of Lecture Hours	36	Exam Hours	03
	Credits 1.5		
Course Objectives:			
This course will enable student to	D:		
1. Impart knowledge in testing	of fuels properties.		
2. Understand the working scen	nario of Port and Valve	timing of IC engin	nes
3. Study different performance	parameters of four stro	oke diesel engines	•
4. Know different performance	parameters of petrol er	igines.	
5. Recognize the performance	parameters of Air co	mpressors & Lea	arn the
working of different types of	boilers.		
Syllabus			
1. To find the flash point / fire	e point, viscosity, calori	fic value & carbo	n
residue by using fuel proper	rty testing apparatus		
2. Valve timing diagram of a fo	our-stroke diesel engine	<u>è</u>	
3. Valve timing diagram of a fo	our-stroke petrol engine		
4. Port timing diagram of 2-str	oke petrol engine		
5. Performance test on four str	roke diesel engine test :	rig	
6. Heat balance test on four st	roke diesel engine test	rig	
7. Retardation test on four str	oke diesel engine test r	ig	
8. Morse test on four stroke m	ulti cylinder petrol eng	ine test rig	
9. Performance test on variabl	e compression ratio pe	trol engine test rig	<i>z</i> .
10. Assembly and disassembly	of a four stroke single of	cylinder petrol en	gine.
11. Performance test on two str	oke petrol engine test i	1g	
12. Economical speed test on tw	vo stroke petrol engine	test ng.	
13. Study of steam bollers	acting air compressor	toot rig	
14. Periormance test on recipio	cating an compressor	lest fig	
Course outcomes:			
Un completion of the course stude	ent will be able to:		
1. To calculate given fuel prop	erties		
2. To find port and Valve time	ings of IC engines		
5. 10 linu performance paramo	eler values of four strol	ke diesei engines	
5 To calculate efficiency of	Air compressors & su	nmarize the wor	king of
different types of boilers of	and able to suggest s	uitable boiler ba	sed on
requirement	and able to buggeot o	unable boller ba	

PRODUCTIO	N TECHNOLOGY	LAB				
SEMESTER - IV						
Subject Code	21MEMEL4080	Internal Marks	15			
Number of Practice Hours/Week	3(P)	External Marks	35			
Total Number of Practice Hours	54	Exam Hours	03			
Cr	edits – 1.5					
Course Objectives						
Enable the students to						
1. Impart hands-on practical expos	sure on pattern ma	aking.				
2. Know the fundamentals of moule	d casting with the	help of patterns.				
3. Gain the concept of welding & di	ifferent welding me	ethods with safety				
precaution.						
4. Analyze the concept of metal form	ming processes.					
5. Understand the fundamentals of	f powder metallurg	SV				
6. Understand the processing of pla	astics using inject:	ion & blow molding	g			
machines.						
SYLLABUS						
METAL CASTING						
Pattern Design and making-	for one casting dra	awing.				
• Sand properties testing- for s	strength and perm	eability				
• Mould preparation, Melting a	and Casting					
WELDING						
Gas welding						
Gas cutting						
• Manual metal arc welding- L	ap & Butt Joints					
TIG/MIG Welding	-					
Resistance spot welding						
• Brazing and soldering						
METAL FORMING AND POWDER	METALLURGY					
Blanking & Piercing operatio	ns and studv of si	mple, compound a	ind			
progressive dies	j i i i i i j	I - , - I				
• Deep drawing and extrusion	operations					
 Bending and other operation 	s					
Basic powder compaction an	d sintering					
PROCESSING OF PLASTICS	a 0					
Injection moulding						
Blow moulding						
COURSE OUTCOMES						
1. Demonstrate hands-on prac	ctical exposure on	pattern processes				

- Demonstrate hands-on practical exposure on pattern p
 Know the process of mould preparation using patterns.
- 3. Acquire fundamental knowledge on metal forming processes.
- 4. **Operate** arc welding, gas welding, and resistance welding equipment
- 5. **Apply** the practical concepts of powder metallurgy.
- 6. **Identify** the difference between injection and blow moulding.

COMPUTER AIDED THREE-DIMENSIONAL INTERACTIVE APPLICATION (CATIA)

(Skill Oriented Course)

SEMESTER IV	
-------------	--

Course Code	21MEMES4090	IA Marks	15
Number of Lecture Hours/week	3	Exam Marks	35
Total Number of Lecture Hours	48	Exam Hours	03
	a 11: a		

Credits- 2

The student will develop a skill to use software to create 2D and 3D models. **Session-1**

• Geometrical Shape Design (GSD) introduction to workbench Creation of surfaces

Session-2

• Practice of extrude, revolve and primitive tools

Session-3

- Creating basic curves (wireframe) Practice of circles, spline, helix and spiral
 Session-4
- Creating surfaces from surfaces Practice of blend, multi-sections & fill Session-5
 - Trimming surfaces Practice of splitting and trimming of surfaces

Session-6

- Creating curves on surfaces, connect curves, iso-parametric, conic and corners Basic GSD operations,
- Practice 3 to 4 GSD components

Session-7

- Projections
- Advanced GSD operations, conversion of surfaces to solids
- Practice 3 to 4 sheet metal components

Session-8

- Assembly introduction to workbench Importing of parts and products
- Practice of product structure tool with basic assembly
- Assembly constraints

Session-9

- Practice of various constraint tools
- Types of Assembly approach
- Top-down assembly and Bottom-up assembly

Session-10

• Creating 2 to 3 assemblies with top down and bottom-up approach

COURSE OUTCOMES:

On completion of the course student will be able to:

- 1. Can use interface of CATIA
- 2. Can use command panel, menus, viewports and command icons in CATIA
- 3. Can create two dimensional drawings in CATIA
- 4. Can create 3D part drawings using commands in CATIA

COURSE STRUCTUREAND SYLLABUS SITE-21 REGULATIONS

For III B.Tech. V Semester Mechanical Engineering

S.	CC	Course Code	Course Title	L	Т	Р	Cr
No.							
1	PCC	21MEMET5010	Machine Tools and Metrology	3	0	0	3
2	PCC	21MEMET5020	Dynamics of Machinery	3	0	0	3
3	PCC	21MEMET5030	Design of Machine Elements-	3	0	0	3
			II				
4	PEC	21MEMEP504X	Professional Elective-I	3	0	0	3
5	OEC	21MEXXO505X	Open Elective Course-I	3	0	0	3
6	PCC	21MEMEL5060	Machine Tools and Metrology	0	0	3	1.5
			Lab				
7	PCC	21MEMEL5070	Theory of Machines Lab	0	0	3	1.5
8	SOC	21CMAHS5080	Soft Skills & Aptitude Builder	1	0	2	2
			- 1				
9	MC	21MEMEN5090	Machine Drawing Practice	0	0	3	0
			Lab				
			Summer Internship (2				
10	SI	21MEMER5100	months) after II year to be	0	0	0	1.5
			evaluated during V semester				
	Total credits			21.5			
			Honors/Minor courses (The				
11	H/M		hours distribution can be 3-	4	0	0	4
			0-2 or 3-1-0 also)				

III B. Tech. V Semester Course Structure for the Regulation SITE 21

Professional Elective Course -I

S.No.	CC	Course Code	Course Title	L	Т	Ρ	Cr
1			Conventional and Non-	3	0	0	3
1		ZIMEMEP504A	Conventional Power Stations				
2		21MEMEP504B	Nano Technology	3	0	0	3
2	PEC		Industrial Robotics with	3	0	0	3
3		ZIMEMEP504C	Artificial Intelligence				
4		21MEMEP504D	Advanced Materials	3	0	0	3
5		21MEMEP504E	Industrial Management	3	0	0	3
NPTEL	NPTEL/SWAYAM/MOOCs (Course of 12 Weeks duration) to be offered						

MACHINE TOOLS AND METROLOGY				
SE	MESTER - V	11		
Subject Code	21MEMET5010	Internal Marks	30	
Number of Lecture Hours/Week	3	External Marks	70	
Total Number of Lecture Hours	50	Exam Hours	03	
С	redits – 03			
Course Objectives:				
The course should enable the stude	ents to:			
1.Acquire the knowledge on the	ory of metal cu	tting and mechai	nisms of	
machining				
2.Understand about the various lat	he machines cutt	ing processes		
3.Understand about the various s	slotting, planning	g drilling & boring	g cutting	
processes				
4.Understand the features of M	lilling process,	milling machines,	Milling	
operations and different types of in	ndexing.			
5.Understand the basics of Metrol	ogy like Surface	roughness, surfac	e finish,	
limits and tolerances etc.				
Unit -1			Hours	
Metal Cutting: Elements of metal	cutting process,	geometry of single	9	
point cutting tool, tool signature, ch	ip formation and	types of chips, chip	0	
breakers, mechanics of orthogonal	cutting – Mercha	nt's force diagram	[,] 10	
cutting forces, cutting speeds, feed	, depth of cut, too	ol life, coolants, too	1 10	
materials.				
Jigs & Fixtures: Principles of desi	gn of jigs and fix	tures, principles o	f	
location and clamping, applications				
Unit -2			-	
Lathe Machines: Engine lathe – p	orinciple of worki	ng, specification o	f	
lathe, types of lathes, construction	n of engine lathe	e, lathe operations	, 08	
work holders & tool holders – lath	ne attachments,	turret and capstar	1	
lathes. Principal features of automatic lathes - classification - single				
spindle and multi spindle automatic lathes				
Unit – 3			-	
Shaping, Slotting & Planning Ma	achines: Introdu	ction - principle o	f	
working – principle parts – specifica	ations - operations	s performed - slide	r	
crank mechanism				
Drilling & Boring Machines: Int	roduction – cons	truction of drilling	g 10	
machines – types of drilling machi	nes- specification	is- types of drills -	-	
geometry of twist drill - operations	s performed – too	l holding devices ·	-	
deep hole drilling machines- Boring	g Machines – fine	Boring Machines -	-	
Jig boring machines				
Unit – 4				
Milling Machines: Principles of wo	rkıng – specificati	ions – classification		
ot milling machines, principal fe	eatures of horizo	ontal, vertical and	1 12	
universal milling machines, machin	ning operations, t	ypes of cutters and	1	

geometry of milling cutters, accessories to milling machines	
introduction to indexing, classification, methods of indexing- simple &	
compound.	
Finishing Processes: Theory of grinding, classification of grinding	
machines, cylindrical and surface grinding machines, tool and cutter	
grinding machines, different types of abrasives, bonds and selection of a	
grinding wheel.	
Unit – 5	
Systems Of Limits and Fits: Introduction nominal size tolerance	
limits deviations fits Unilateral and bilateral tolerance system bole	
and shaft basis systems, and problems	
Lincor Monouromente: Slip gougoo diel indicatore vernier celiner and	10
mieromotore	10
Incronieters.	
Angular Measurements: Bevel protractor, angle slip gauges, angle	
dekkor and sine bar	
Course outcomes: At the end of the course the student will be in a pos	ition to:
1. Analyze mechanics of orthogonal cutting to metal machining.	
2. Acquire the knowledge on operations in conventional, automatic, Ca	pstan &
turret lathes.	
3. Explain shaping, slotting, planning, drilling and boring machines.	
4. Make gear and keyway in milling machines using indexing mechani	sms and
principles of finishing processes	
5. Outline the linear and angular measuring instruments	
Text Books:	
1. Production Technology by R.K. Jain and S.C. Gupta/ Hanna Publish	ners
2. Workshop Technology – B.S.Raghu Vamshi – Vol II/ Dhanpat Rai &	Co
3. Manufacturing Technology Vol-II/P.N Rao/Tata McGraw Hill	
4 Engineering Metrology / R K Jain / Khanna Publishers	
Reference Books:	
1 Metal cutting Principles by M.C. Shaw/ Oxford University Press	
2 Metal outting and machine tools by Boothroyd / CPC Press	
2. Engineering Metrology / Mehaion / Dhennet Dei Dublishere	
5. Engineering Metrology / Manajan / Dhanpat Rai Publishers	
Question paper pattern:	(75)1
1. Question paper contains 10 Questions, 2 from each course outco	me. The
student must answer 5 full questions by selecting one question fr	om each
course outcome (Internal Choice)	
2. All questions carries 14 marks each	
3. Each full question will have sub question covering all topics under	a course
outcome	

CO/PO	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	3						1					1	2	
2	2						1					1	2	
3	2						1					1	3	
4	2						1					1	2	
5	3						1					1	2	
Course	3						1					1	3	

DYNAMIC	S OF MACHINER	RY	
SE	MESTER - V		•
Subject Code	21MEMET5020	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
С	redits – 03		
Course Objectives:			
Enable the students to			
1. Demonstrate the gyroscopic and	d analyze effects	under different fo	orces and
torques			
2. Analyze the existence of friction	n and its importa	ance in rotating p	oarts like
clutches, brakes and dynamome	ters.		
3. Identify the dynamic forces and	torques develope	d in the rotating j	parts like
cranks, flywheels and governors.			
4. Estimate the unbalanced force	es and torques o	developed in rota	ting and
reciprocating parts of an engine.			
5. Identify different types of vibra	tions in machine	e parts and evalu	late their
effects.			
Unit -1			Hours
Precession : Gyroscopes, effect of p	recessional motion	n on the stability c	of 8
moving vehicles such as motor car	, motor cycle, aer	o planes and nava	d C
ships.			
Unit -2	<u> </u>		
Friction : Inclined plane, friction of	of screw and nuts	s, pivot and collar	,
uniform pressure, uniform wear, fr	iction circle and fr	iction axis	
Clutches : Friction clutches- single	e disc or plate cli	atch, multiple dis	c I a
clutch, cone clutch, centrifugal clut	tch.	• , • • •	12
Brakes and Dynamometers: Simp	ble block brakes,	internal expandin	g
brake, band brake of vehicle. Ge	eneral description	and operation of	
dynamometers: Prony, Rope brake	e, Epicyclic, Bevi	s Gibson and be	lt
Unit – 3	· c 1		1
Turning Moment Diagrams: Dyn	amic force analy	sis of slider cran.	K
mechanism, inertia torque, ang	ular velocity an	d acceleration c	
connecting rod, crank effort and tur	rning moment diag	grams – fluctuatio	ⁿ 12
or energy – ily wheels and their des	ign.	. 1	
Governors: watt, porter and proell	governors, spring	g loaded governors	-
Hartnell and Hartung with auxi	nary springs, en	ort, sensitiveness	3,
Unit - 4 Delensing Delensing Costation			4
different planes series and bit	asses single and m	hada Driverse	u 8
unierent planes, using analytical a	ina graphical met	noas. Primary and	a

secondary balancing of reciprocating masses.

Unbalanced forces and couples in multi cylinder engines:V-engines, in-line and radial engines for primary and secondary balancing. Locomotive balancing, hammer blow, swaying couple, variation of tractive effort.

Unit – 5

Vibrations: Introduction, Terms used in vibrations, Applications.

Longitudinal Vibrations: Free vibration of spring mass system – Natural frequency-types of damping – damped free vibration.

Forced Vibration: Simple problems on forced damped vibration, magnification factor, vibration isolation and transmissibility.

Transverse Vibrations: Transverse loads, vibrations of beams with concentrated and distributed loads. Dunkerly's method, Rayleigh's method, whirling of shafts, critical speeds.

Torsional Vibrations: Two and Three rotor systems.

Course outcomes:

1. Demonstrate the gyroscopic effect on moving bodies like aeroplane, ship, 2wheeler and 4-wheeler vehicles in various conditions using the concepts of gyroscope

10

- 2. Analyze the application and effect of friction in moving bodies like clutches, brakes and dynamometers in producing and transmission of energy.
- 3. Identify the dynamic forces and torques developed in the rotating parts like cranks, flywheels and governors.
- 4. Estimate the balanced and unbalanced forces and torques developed in rotating and reciprocating parts of an engine due to the presence of various components on the shaft.
- 5. Evaluate various types of vibrations and its effects produced like whirling, resonance and others in machine parts during stationary and working conditions.

TEXT BOOKS:

- 1. Theory of Machines / S.S. Rattan/ Mc. GrawHill
- 2. Mechanism and Machine Theory /Ashok G.Ambedkar/ PHI Publications

REFERENCES:

- 1. Theory of Machines / Thomas Bevan / Oxford UniversityPress
- 2. Theory of machines /Khurmi/S.Chand
- 3. Mechanism and Machine Theory / JS Rao and RV Dukkipati / NewAge
- 4. Theory of Machines / Shigley / MGH

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1		2	1	2									1	
2	2	1	2										2	
3	1	2	1										2	
4	2	2	1										2	
5	1	3	3	1									2	
Course	2	3	2	1									2	

DESIGN OF MA	ACHINE ELEMEN	TS-II	
SEN	MESTER - V		•
Subject Code	21MEMET5030	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
Cr	edits – 03		
Students will be able to			
1. Design and analyze the pressure	distribution in jou	ırnal bearings.	
2. List out engine components suc	ch as cylinder, pi	ston, connecting r	od and
crankshaft.			
3. Summarize the design procedur	re for shafts and	l couplings with d	ifferent
geometrical features under variou	is loading condition	ons.	
4. Determine geometrical relations f	or length of belt a	nd chain.	
5. Distinguish types of pulleys/sp	prockets for belt	and chain drive	s from
manufacturer's catalogue and exp	plain procedure fo	or beam strength ar	nd wear
strength, effective load and modu	le based on beam	strength.	
Unit -1			Hours
Bearings: Classification of bearing	gs- applications,	types of journal	
bearings – lubrication – bearing mo	odulus – full and	partial bearings -	10
clearance ratio – heat dissipation of l	pearings, bearing	materials – journal	10
bearing design – ball and roller bear	rings – static load	ing of ball & roller	
bearings, bearing life.			
Unit -2			
Engine Parts:			
Connecting Rod: Thrust in connec	ting rod – stress	due to whipping	
action on connecting rod ends – cra	nks and crank sh	afts, strength and	10
proportions of overhung and center	cranks – crank pi	ns, crank shafts.	
Pistons, forces acting on piston – cor	nstruction design	and proportions of	
piston, cylinder, cylinder liners.			
Unit – 3			
Design of Shafts: Design of solid	and hollow shafts	s for strength and	
rigidity, Design of shafts for combin	ied bending and a	axial loads – Shaft	10
sizes.			10
Design of Shaft Couplings: Rigid co	ouplings: Muff, Sp	lit-muff and flange	
couplings – Flexible couplings, Flang	ge coupling (modi	fied).	
Unit – 4			
Design of Belt and Rope Drives: S	election of flat be	lts, Pulleys for flat	
belts, Arms of cast iron pulley, Selec	tion of V-belts and	l V-grooved pulley,	
Construction of wire rope, Stresses	s in wire ropes, l	Rope sheaves and	
drums.			10
Design of Chain Drives: Introduct	tion to chain driv	ves, Roller chains,	
geometric relationships, Polygonal e	effect, Power ratin	g of roller chains,	
Proportions of sprocket wheels, Desi	ign of chain drive.		
Unit – 5			

Design of blank de Effective module to of modul Design of Beam st strength	Design of Spur Gear Drives: Force analysis on spur gear tooth, Gear blank design, module and face width, Beam strength of gear tooth, Effective load on gear tooth, Lewis Fatigue equation, Estimation of module based on beam strength, Wear strength of gear tooth, Estimation of module based on wear strength, Design of Helical Gear Drives: Force analysis on helical gear tooth, Beam strength of helical gears, Effective load on gear tooth, Wear strength of helical gears, Herringbone gears.											10		
Course o	outco	mes:	C . 1 ·			. 1			1 /					
Un the c	omple	tion o		s cou	irse,	stuae	ents	are ab	le to	<i>~</i> ~				
1. Analy	yze un nute (le pres Jesian	nar	omet	ers o	f eng	ine (nente	gs.	28 01	lind	or ni	ston
conn	ecting	rod a	nd c	rank	shaft	- Cing		Jompo	nemes	Such	as cy	ymu	ci, pi	51011,
3. Analy	vze s	hafts	and	cou	pling	s wi	th d	lifferer	nt geo	metri	cal f	eatu	res u	nder
vario	us loa	ding o	condi	ition	s.	,								
4. Calcu	late	geome	etrica	l rela	ation	s for	leng	th of b	elt an	ld cha	in.			
5. Iden	t ify t	ypes	of	pulle	eys/s	procl	kets	for 1	oelt a	and	chain	ı dri	ves	from
manı	ıfactu	rer's	cata	logu	e an	d lea	arne	d calo	culatio	on pr	roced	ure	for 1	beam
stren	gth a	nd w	ear	strer	ıgth,	effec	ctive	load	and	modu	le ba	ased	on 1	beam
stren	gth.													
TEXT BO	OKS													
1. Machi	ne De	esign/	V. Ba	anda	ri/ T	MH F	Publi	shers						
2. Machi	ne de	sign /	NC	Panc	lya&	CS S	hah	/Char	otar P	ublisl	ning	Hous	e Pvt	. Ltd
REFERE	NCES	<u>6 BOO</u>	KS											
1. Design	n of M	lachin	e Ele	emen	ts /	V.M.I	Faire	s/McN	Millan					
2. Machi	ne de	sign /	Sch	aum	Seri	es/M	cGra	aw Hill	Prote	ession	al			
3. Machi	ne De	esign/	Shig	gley,	J.E/.	MCG1	aw I	-1111						
4. Machi	ne De	esign -	-INOPT	on/	Pears	son p		sners						
	i papo	er pat	tern		10 0	hioat	iona	0 fro		ah aa	11#00	outo		Th_{0}
1. Quest	nt mu	aper (uns 5 fi	10 Q 11 ai	juesi	10118	, 2 110	on ea		alleet	ion f	from	anch
stude		ist all	SWCI Inter	$\frac{3}{2}$	n qu boio	້ວາ	115 1	Jy Sele	cung	one	quesi	1011	IOIII	cacii
	estion		inci ies 1	1 a c	arke	each								
3 Each	full a	lestio	n wi	ll hav	ve su	h au	estic	n cove	ring	all tor	nics 1	ındei	r a co	ourse
	me.			ii iiu		io qu	cotic				0100 0	111401	. u 00	Juise
Course Outcomes to Program Outcomes manning														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3										3	3	
2	3	3	2									3	3	
3	3	3	2									3	3	
4	3	3	2									3	3	
5	3	3	2									3	3	
Course	3	3	2									3	3	

PROFESSIONAL ELECTIVE COURSES -I

CONVENTIONAL & NON-CO SEM	DNVENTIONAL PC IESTER - V	WER STATIONS								
Subject Code	21MEMEP504A	Internal Marks	30							
Number of Lecture Hours/Week	3(L)	External Marks	70							
Total Number of Lecture Hours50Exam Hours										
Credits – 03										
 Course Objectives: Enable the students to 1. Acquire knowledge on sources of Thermal Power Plants. 2. Acquire knowledge on Diesel and I 3. Apply the basic knowledge of nuclear power plants and their au 4. Understand the principles and words 5. Understand the Principles and words 	of energy and un Hydro Power Static clear energy and i xiliaries. rking of solar, wind working of Geothe the principles of	derstand the wor ons and their auxil dentify Different t d and Bio gas plan ermal energy, tida direct energy con	king of iaries ypes of ts l, wave version							
Unit -1			Hours							
 Introduction to the sources of energy: Resources and development of power in India. Steam Power Plant: Plant layout, working of different circuits, overfeed and underfeed fuel beds, traveling grate stokers, spreader stokers, retort stokers, pulverized fuel burning system and its components, cyclone furnace, dust collectors. Gas Turbine Plant: Introduction- classification - construction – layout with auxiliaries 										
Unit -2										
Diesel Power Plant: Plant layout wir air starting equipment. combined cyc Hydroelectric Power Plant: Water measurement– hydrographs – stora dams and spillways. Hydro Projects and Plant: Classi auxiliaries – plant operation pumped	th auxiliaries – fue cle power plants as power – hydrolog ge and pondage – fication – typical l storage plants.	el supply system, nd comparison. ical cycle / flow classification of layouts – plant	10							

Unit – 3	
Nuclear Power Station: Nuclear fuel – breeding and fertile materials – nuclear reactor – reactor operation. Types of Reactors: Pressurized water reactor, boiling water reactor, sodium-graphite reactor, fast breeder reactor, homogeneous reactor, gas cooled reactor, radiation hazards and shielding – radioactive waste disposal.	10
Unit – 4	
 Solar Power plant: classification of concentrating collectors, Flat plate and concentrating collectors, solar ponds. Solar plants, photovoltaic energy conversion Wind Energy: Sources and potentials, horizontal and vertical axis windmills, performance characteristics. Bio-Mass: Principles of Bio-Conversion, Anaerobic /aerobic digestion, types of Bio-gas digesters. 	10
Unit – 5	
 Geothermal Energy: Resources, types of wells, methods of harnessing the energy. Tidal and Wave energy: Potential and conversion techniques Direct Energy Conversion: Thermoelectric generators, principles and working of MHD generator, Fuel cells 	8
 Course outcomes: On completion of this course, students should be able to: 1. List, describe the main sources of energy and describe the functions of major equipment and auxiliaries of a Thermal power plants 2. Identify, demonstrate the components of an IC Engine and hydro powe plant and compare the various combined cycle power plants. 3. Explain the basic principles of nuclear reactions and explain working principle of different types of nuclear power plants. 4. Apply the knowledge of Solar, Wind energy and Biomass, in generation power. 5. Identify the principles of direct energy conversion systems and explain basic principles of Geothermal, Tide and Wave Energy 	of the ver n of n the
 Text Books: A Text Book of Power Plant Engineering – R.K. Rajput – Laxmi Publica A Course in Power Plant Engineering – Arora, Domkundwar – Dhanpa Co Power Plant Engineering – P.C.Sharma / S.K.Kataria Publications Name commentional Energy Sources / C.D. Bai/ Khanna Publications 	ations. at Rai &

4. Non- conventional Energy Sources / G.D. Rai/ Khanna Publishers

Reference Books:

- 1. Nag P.K., Power Plant Engineering, 3rd ed., Tata McGraw Hill
- 2. Renewable Energy Resources / Tiwari and Ghosal / Narosa
- 3. An Introduction to Power Plant Technology / G.D. Rai/Khanna Publishers.
- 4. Power Plant Engineering G. R. Nagpal Khanna Publishers

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	3		3	-			-						3	
2	3		3				3						3	
3	3		3										3	
4	2		3				3						3	
5	3		3				3						3	
Course	3		3				2						3	

NANO T	ECHNOLOGY		
SEM	ESTER - V		
Subject Code	21MEMEP504B	Internal Marks	3 0
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
Cre	dits - 03		•
 Enable the students to 1. Acquire knowledge on importance of 2. Identify the properties of nanoma science. 3. Apply the concept of synthesis & fa 4. Understand the various characteriz 5. Understand the concept of carbon in 	of Nanoscience & Na aterials & their ap brication of nanoma ation techniques of nanotechnology & it	anotechnology oplications in m aterials. nanomaterials. ts applications.	naterial
Unit -1	T		Hours
Introduction to Nanotechnology: Emergence of Nanotechnology, Histonanometer, nanomaterial & national nanomaterials, basic applications of technology.	Importance of na ory of nanoscience notechnology, cla of nanotechnology	no-technology, , Definition of ssification of in science &	08
Unit -2			
Properties of Materials : Mechanical, of nanomaterials, effect of size reduct nanotechnology in surface science, er	thermal, and magr tion on properties. hergy & environmen	netic properties Applications of t.	08
Unit – 3			
Synthesis: Synthesis of bulk polycry crystals, preparation of nanoparticl synthesis Fabrication: Hydro thermal growth, top-down approach- Ball milling, requirements for realizing semiconduc	stalline samples, g e- bottom-up app thin film growth, I micro fabrication ctor nanostructures	rowth of single roach- sol gel PVD and CVD, , lithography,	12
Unit – 4			
Characterization Techniques : X-Ramicroscopy, transmission electron microscopy, atomic force microsco diffuse reflectance spectra, Raman spatructured thin films, applications of	ay diffraction, scar microscopy, sca py, piezo respons pectroscopy. Applic quantum dots.	nning electron anning probe e microscopy, ations of nano	12
Unit – 5			
Carbon Nanotechnology : Allotropes carbon allotropes, synthesis of diamor and morphology. Applications of nanocrystalline d applications of carbon nanotu nanotechnology in biology and medici	s of Carbon, Char nd – nucleation of di iamond films, gr bes, applications ine.	acterization of amond, growth rapheme, and of carbon	10

Course outcomes:

On completion of this course, students are able to

- 1. Explain the importance of Nanotechnology & its emergence in various fields.
- 2. Identify various properties of nanomaterials in different applications.
- 3. Select synthesis and fabrication methods, techniques and process parameters for processing of nanomaterials.
- 4. Evaluate the properties of nanomaterials using different characterization tools & equipment.
- 5. Discuss the concept of carbon allotropes in Nano Technology & their applications

Text Books:

1. Nanoscience and nanotechnology: M.S. Ramachandra Rao & Shubra singh/ Wiley publishers.

Reference Books:

1. Introduction to nanotechnology by Charles P.Poole., J.Owens/ Wiley publishers.

- 2. Nanotechnology by Jermy J Ramsden, Elsevier publishers
- 3. Nano Essentials- T Pradeep/TMH

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

CO/PO	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2		2		1								1	
2	1	2		2								1	2	
3		1	2	2	1							1	2	
4				2	2							1	1	
5					2		2					2	2	
Course	1	1	1	2	2		1					1	2	

INDUSTRIAL ROBOTICS	WITH ARTIFICIA	L INTELLIGENCE	
SEI	MESTER - V	Γ	
Subject Code	21MEMEP504C	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
Cı	redits – 03		
Enable the students to			
1. Gain the knowledge of industrial	robots, configura	tions and actuators	
2. Apply spatial transformations to	obtain forward an	nd inverse kinematio	cs.
3. Generate trajectory planning for	path description	and generation.	
4. Describe the functioning of sense	ors and the speci	fic applications of ro	bots in
industry.			
5. Understand the concepts of Artif	icial Intelligence i	n manufacturing inc	dustry.
Unit -1			Hours
Introduction: An overview of Ro	botics, Automat	ion and Robotics,	
CAD/CAM and Robotics — pro	esent and futu:	re applications –	
classification by coordinate system.			10
Components of industrial robotics: (Components, com	mon types of arms,	10
number of degrees of freedom,	end effectors,	requirements and	
challenges of end effectors, Actuate	ors-Pneumatic, H	ydraulic actuators,	
electric & stepper motors.			
Unit -2			
Motion analysis: Homogeneous	transformations	as applicable to	
rotation and translation – problems			10
Manipulator kinematics: Specifica	tions of matrices,	D-H notation joint	
coordinates and world coordinates	Forward and in	verse kinematics –	
problems.			
Unit – 3			
Trajectory planning: General con	siderations in pa	th description and	
generation. Trajectory planning, p	path planning, S	kew motion, joint	10
integrated motion –straight line mot	tion- Robot progra	amming, languages	
and software packages.			
Unit – 4			
Feedback components: position s	sensors – potenti	ometers, resolvers,	
encoders – Velocity sensors.	• • • • • •		10
Robot applications in manufacti	uring: Material I	ransier - Material	10
nandling, loading and unloading- P	rocessing - spot a	ind continuous arc	
welding & spray painting - Assembly	y and inspection		
UIIII = 3	Contradiu - Trad	4	
Artificial intelligence in Manu	iacturing indus	try: introduction,	
Adventogoo limitations and anali	contions of Antific	vial Intelligence in	
Auvaniages, ininiauons and appli	calloris of AIUIIC	nai intelligence in	10
control industrial safety and maint	enance	spectron, inventory	

Course outcomes:

- 1. Identify various robot configurations, actuators and sensors for a robot based on specific application.
- 2. Carry out the motion analysis and kinematic analysis for forward and inverse kinematics
- 3. Perform trajectory planning for a robot manipulator
- 4. Explain the specific applications of a robot in industry.
- 5. Apply the concepts of Artificial Intelligence in manufacturing industry.

TEXT BOOKS

- 1. Industrial Robotics / Groover M P / Pearson Edu/ McGraw Hill
- 2. Robotics and Control / Mittal R K & Nagrath I J / TMH
- 3. Robotics / Fu K S/ McGraw Hill
- 4. Russell, S. and Norvig, P. 2015. Artificial Intelligence A Modern Approach, 3rd edition, Prentice Hall.

REFERENCE BOOKS

- 1. Robotic Engineering / Richard D. Klafter/ Prentice Hall
- 2. Introduction of robotics/ John J Craig/ Pearson Edu
- 3. Robot Dynamics & Control Mark W. Spong and M. Vidyasagar / John Wiley
- 4. Robot Analysis and Intelligence / Asada and Slotine / Wiley Inter-Science.

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

CO/PO	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	2	2	3		3								2	
2	3	3	3										2	
3	3	3	2		3								2	
4	3	2	2		3								2	
5	2	2	3		3								2	
Course	3	3	3		3								2	

ADVANCED MATERIALS									
SE	MESTER - V								
Subject Code	21MEMEP504D	Internal Marks	30						
Number of Lecture Hours/Week	3(L)	External Marks	70						
Total Number of Lecture Hours	50	Exam Hours	03						
Credits – 03									
Course Objectives									
The objective for this course is									
1. To understand the mechanics o	f different materia	ls.							
2. To understand the concepts suc	ch as anisotropic 1	material behavior,							
constituent properties and man	ufacturing proces	ses of different							
composites.									
3. To understand the suitability of	smart and nano i	materials for engine	ering						
applications.									
Unit -1			Hours						
INTRODUCTION TO COMPOS	ITE MATERIAI	S: Introduction,							
classification: polymer matrix con	nposites, metal n	natrix composites,							
ceramic matrix composites, carbon-	-carbon composite	es, fiber- reinforced	10						
composites and nature-made	composites, a	and applications							
REINFORCEMENTS: Fibres- glass,	silica, kevlar, car	bon, boron, silicon							
carbide, and born carbide fibres.									
Unit -2									
Polymer composites, thermop	lastics, thermo	setting plastics,							
manufacturing of PMC, MMC	& CCC and the	heir applications.	10						
MANUFACTURING METHODS: Au	itoclave, tape pro-	duction, moulding							
methods, filament winding, hand la	yup, pultrusion, F	RTM.							
Unit – 3									
MACROMECHANICAL ANALYSIS	GOFA LAMI	NA: Introduction,							
generalized Hooke's law, reduction of	of Hooke's law in t	hree dimensions to	10						
two dimensions, relationship of c	compliance and s	stiffness matrix to	10						
engineering elastic constants of	an orthotropic	lamina, laminate-							
laminate code									
Unit – 4									
FUNCTIONALLY GRADED MATER	RIALS: Types of fu	unctionally graded							
materials-classification-different s	ystems-preparatic	on-properties and							
applications of functionally graded	materials.		10						
SHAPE MEMORY ALLOYS: In	troduction-shape	memory effect-	10						
classification of shape memory	alloys-composition	on-properties and							
applications of shape memory alloys	s.								
Unit – 5									
NANO MATERIALS: Introduction-p	properties at nano	scales-advantages							
& disadvantages-applications in cor	nparison with bull	k materials (nano –	10						
structure, wires, tubes, composites	s). state of art nar	no advanced- topic							
delivered by student.									

Co	ourse outcomes:
Af	ter learning the course, the students should be able to
1.	Explain various composite materials with their constituents, advantages,
	limitations and applications
2.	Describe various manufacturing methods of polymer matrix composites
	materials.
3.	Derive stress strain relationships for orthotropic materials and analyze
	orthotropic lamina.
4.	Explain various functionally graded materials with their properties,
	preparation and applications
5.	Explain different smart materials with their application.
TI	EXT BOOKS
1.	Nano material /A.K. Bandyopadyay/New age Publishers
2.	Material science and Technology: A comprehensive treatment/Robert
	W.Cahn,/VCH
3.	Engineering Mechanics of Composite Materials / Isaac and M Daniel/Oxford
	University Press
RI	EFERENCE BOOKS
1.	Mechanics of Composite Materials / R. M. Jones/ Mc Graw Hill Company,
	New York, 1975.
2.	Analysis of Laminated Composite Structures / L. R. Calcote/Van Nostrand
	Rainfold,NY 1969
3.	Analysis and performance of fibre Composites /B. D. Agarwal and L. J.
	Broutman /Wiley Interscience, New York, 1980
4.	Mechanics of Composite Materials - Second Edition (Mechanical Engineering)
	/Autar K.Kaw / CRC Press
Qı	lestion paper pattern:
1.	Question paper contains 10 Questions, 2 from each course outcome. The
	student must answer 5 full questions by selecting one question from each
_	course outcome (Internal Choice)
2.	All questions carries 14 marks each
3.	Each full question will have sub question covering all topics under a course

3. Each full question will have sub question covering all topics under a course outcome

CO/PO	PO 1	PO 2	РО 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	2	2										2		
2	2				2							2		
3	1	1			1							1		
4	2					2					2	2		
5											2	2		
Course	2	1			1	1					2	2		

INDUSTRI	AL MANAGEMEN	T								
SE	MESTER - V									
Subject Code	21MEMEP504E	Internal Marks	30							
Number of Lecture Hours/Week	3(L)	External Marks	70							
Total Number of Lecture Hours	50	Exam Hours	03							
Credits – 03										
Course Objectives										
The objective for this course is										
1. To impart fundamental knowle	dge and skill sets	required in the Ind	lustrial							
Management and Engineering p	profession, which	include the ability t	o apply							
basic knowledge of mathematic	s, probability and	statistics, and the	domain							
knowledge of Industrial Manage	ement and Engine	ering								
2. To produce graduates with the	ability to adopt a s	system approach to	design,							
develop, implement and innova	ate integrated sys	stems that include	people,							
materials, information, equipme	ent and energy.									
3. To enable students to underst	tand the interact	ions between engin	ieering,							
business, technological and env	aronmental spher	es in the modern so	ciety.							
4. To enable students to understand	nd their role as en	gineers and their in	ipact to							
	al context.		ITowns							
Unit -1 INTRODUCTION: Definition of indu	atrial an aire agrice a	(IT) development	nours							
INTRODUCTION: Definition of indu	strial engineering	(I.E), development,								
applications, role of an industr	al engineer, di	lierences between	10							
IF and productivity measurement	onconta of manage	uantitative tools of	10							
functions of monogement scientifi	in monogement 7	Foular's principles								
theory Y and theory V Eavol's princ	vinles of managem	ent								
Init -2	ipics of managem									
PLANT LAVOUT Factors governing	a plant location t	when of production								
lavouts advantages and disadvant	ages of process l	avoit and product	10							
layout applications quantitative	techniques for	ontimal design of	10							
layouts, plant maintenance, preven	tive and breakdow	n maintenance.								
Unit – 3										
WORK STUDY: Importance, types	s of production.	applications, work								
study, method study and time st	udy, work sampli	ing, PMTS, micro-	10							
motion study, rating techniques, M	ſM, work factor sy	stem, principles of								
Ergonomics, flow process charts, st	ring diagrams and	l Therbligs								
Unit – 4	0 0	0								
STATISTICAL QUALITY CONTROL	.: Quality control,	Queing assurance								
and its importance, SQC, attribute	sampling inspecti	on with single and								
double sampling, Control charts – X	K and R – charts Σ	K and S charts and								
their applications, numerical examp	oles.		10							
TOTAL QUALITY MANAGEMENT:	zero defect conce	ept, quality circles,								
implementation, applications, ISO	O quality system	ns. six sigma –								
definition, basic concepts										

Unit – 5											
RESOURCE MANAGEMENT: Concept of human resource management,											
personnel management and industrial relations, functions of personnel											
management, Job-evaluation, its importance and types, merit rating,											
quantitative methods, wage incentive plans, types.											
VALUE ANALYSIS: Value engineering, implementation procedure,											
enterprise resource planning and supply chain management.											
Course outcomes:											
After learning the course, the students should be able to											
1. Design and conduct experiments, analyse, interpret data and synthesize											
valid conclusions											
2. Design a system, component, or process, and synthesize solutions to achieve											
desired needs											
3. Use the techniques, skills, and modern engineering tools necessary for											
engineering practice with appropriate considerations for public health and											
safety, cultural, societal, and environmental constraints											
4. Function effectively within multi-disciplinary teams and understand the											
fundamental precepts of effective project management											
TEXT BOOKS											
1. Industrial Engineering and management / O.P Khanna/Khanna Publishers.											
2. Industrial Engineering and Production Management/Martand											
Telsang/S.Chand & Company Ltd. New Delhi											
REFERENCE BOOKS											
1. Industrial Management / Bhattacharya DK/Vikas publishers											
2. Operations Management / J.G Monks/McGrawHill Publishers.											
3. Industrial Engineering and Management Science/T.R. Banga,S.C.Sharma,											
N. K. Agarwal/Khanna Publishers											
4. Principles of Management /Koontz O' Donnel/McGraw Hill Publishers.											
5. Industrial Engineering and Management /NVS Raju/Cengage Publishers											
Question paper pattern:											
1. Question paper contains 10 Questions, 2 from each course outcome. The											
student must answer 5 full questions by selecting one question from each											
course outcome (Internal Choice)											
2. All questions carries 14 marks each											
3. Each full question will have sub question covering all topics under a course											
outcome											
Course Outcomes to Program Outcomes mapping:											
CO/PO PO P											
<u> </u>											
1 2 2 2 1											
2 2 2 1 1 1 1											
3 2 2 1 1 1 2 1											
4 1 1 1 3 1											
4 1 1 1 3 1											
5 1 1 3 1 Course 2 1 1 3 1											

MACHINE TOOLS AND METROLOGY LAB										
SEMESTER - V										
Subject Code	21MEMEL5060	IA Marks	15							
Number of Lecture Hours/Week	3	Exam Marks	35							
Total Number of Lecture Hours	48	Exam Hours	3							
Credi	ts – 1.5									
Course objectives: The students shou	ld be able to:									
1. Know the basic operations such	as turning, shap	ing, slotting, n	nilling,							
grinding, etc										
2. Describe the effect of process param	eters.									
3. Gain the knowledge of different	coolants used in	drilling and gr	rinding							
operations.										
4. Measure lengths, diameters and hei	ghts									
5. Determine the pitch of screws and g	ears									
EXPERIMENTS										
1. Step turning and thread cutting on lathe machine										
2. Producing a hole on given specimen	2. Producing a hole on given specimen using drilling machine									
3. Producing a flat surface on given wo	3. Producing a flat surface on given work piece using shaping machine									
4. Machining a spur gear using slottin	4. Machining a spur gear using slotting machine									
5. Producing a keyway slot using millin	ng machine	1 •								
6. Producing a cylindrical surface usin	g cylindrical grindi	ng machine								
7. Producing a flat surface using surfa	ce grinding machin	e								
8. Producing a flat surface using plane	r machine		_							
9. Grinding of single point cutting tool	angles using tool o	s cutter grinding								
10 Macquiring longths beights diamet	ora maina vornior og	linora mioromo	tor							
height gouge	ers using vermer ca	mpers, microme	ter,							
11 Measuring hore diameter using inte	rnal micrometer an	d dial hore indi	rator							
12 Measuring toner angle using hevel r	rotractor sine har		Jator							
13 Measurement of nitch of screw and	gear and clearance	angle of cutting	r tool							
by tool maker's microscope	Scar and clearance	ungle of cutting	, .001							
Course outcomes: Upon successful co	mpletion of this co	urse, the studer	nts will							
be able to:		arbo, the stader								
1. Understand the mechanism of chip	formation.									
2. Analyze various cutting tool parame	ters in different ma	chining operation	ons.							
3. Operate different machine tools.		0 - 1								
4. Apply the knowledge of different	t instruments for	linear and a	ngular							
measurements.			0							
measurements.										

5. Choose the appropriate measuring instrument for a specific requirement.

CO/PO	PO	PO	PO	PO	PO	PO	PO 7	PO	PO	PO 10	PO	PO 10	PSO	PSO
-	L	4	3	4	D	D	1	0	9	10	11	12	1	4
1	3		2				1					1	2	
2	2		2				1					1	2	
3	2		2				1					1	2	
4	2		3		3		1					1	2	
5	3		2		3		1					1	1	
Course	3		3		2		1					1	2	

	THEORY OF MACHINES LAB SEMESTER - V										
Su	bject Code	21MEMEL5070	IA Marks	15							
Nu	mber of Lecture Hours/Week	03(P)	Exam Marks	35							
То	tal Number of Lecture Hours	48	Exam Hours	03							
	Credit	s –1.5									
Co	urse objectives:										
Stı	idents should be able to										
1.	Demonstrate working of gears, gear t	rains and kinemation	c mechanisms								
2.	Evaluate moment of inertia of flywhe	el, coefficient of fric	tion for belt drive	•							
3.	Examine speed regulations of har	t nell governor, ob	oserve the effec	t of							
	gyroscopic couple and cam jump phe	enomena									
4.	Estimate unbalanced forces in stat	tic and dynamic ba	alancing of rota	tıng							
_	masses and determine performance	characteristics of a s	screw jack								
5.	Understand the characteristics of vit	orations in beams ar	nd shafts.								
	periments:	analonation around	anan1- natation	for							
1.	single alider graph machanism (four	loceleration against	crank rotation	101							
2	single slider crank mechanism/iour bar mechanism										
ム. ス	2. Demonstration of various types of gears: Spur, Helical, worm and Bevel Gears										
3. 4	Moment of inertia of a flywheel		puncy								
5	Analysis of motion of a motorized syst	coscope when the co	uple is applied								
0.	along its spin axis	obcope when the co	upie is upplied								
6.	Determination of the position of sleev	ve against controllin	g force and spee	d of							
	a governor and to plot the characteri	stic curves of radius	s of rotation								
7.	Follower displacement vs cam rotation	on for various cam fo	ollower systems								
8.	Study of static and dynamic balancir	ng using rigid blocks	3								
9.	Study of simple and compound screw	v jack and determin	ation of the								
	mechanical advantage, velocity ratio	and efficiency									
10.	Determination of the frequency of u	ndamped free vibra	tion of spring m	ass							
	system										
11.	Determination of the frequency of d	amped force vibration	on of a spring m	ass							
10	system	01									
12.	Determination of whirling speed of sl	halt theoretically an	d experimentally								
	urse outcomes: Upon Completion of	this course, the stud	dents will be able	e to:							
1.	Study different types of four bar med	nanism, gears and g	gear trains.	find							
۷.	the moment of inertia of a flywheel	iween beit and pulle	y unive and also	ma							
ર	Calculate the pyroscopic couple of a	rotating disc unde	er various loade	and							
5.	speed conditions and analyse speed r	regulations of Hartn	a various idaus	ngm							
	iump phenomenon	equations of martin	Surgovernor and o	am							
4.	Distinguish between static and dyn	amic balancing of r	otating masses	and							
	performance characteristics of a scre	w jack.	stating masses	ana							
L		Jucis,									

5. Find the natural frequency of a vibratory system with various beams and critical speed of a shaft for different configurations.
 Course Outcomes to Program Outcomes mapping:

Course Outcomes to Frogram Outcomes mapping.														
CO/PO	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2	1	1								1	2	
2	2	2	2	1								1	2	
3	2	3	1	2								1	2	
4	2	3	2	1								1	2	
5	2	3	2	2								1	2	
Course	2	3	2	2								1	2	

MACHINE DRAWING PRACTICE LAB									
Serbiant Onda	MESTER-V	Techowers 1 Magina	20						
Subject Code	$\frac{21\text{MEMEN5090}}{01(1)+02(D)}$	Internal Marks	30						
Number of Lecture Hours/week	01(L)+03(P)	External Marks	70						
Total Number of Lecture Hours	50	Exam Hours	03						
Credits - 00									
COURSE OBJECTIVES:									
This course will enable students to:	. 1 1	1	1 •						
1. Study the conventions and rule	es to be followed	by engineers for	making						
accurate drawings.									
2. Understand and apply national	and international	standards while c	irawing						
machine component.									
3. Acquire knowledge of fastening a	rrangements such	as riveting.	·						
4. Familiarize in drawing assembly,	orthographic and	sectional views of	various						
Joints.			·						
5. Familiarize in drawing assembly,	orthographic and	sectional views of	various						
couplings.									
			Hours						
Drawing of Machine Elements and	l simple parts								
Selection of views, additional views	for the following r	nachine elements							
and parts.									
a) Popular forms of screw threads, bolts, nuts and foundation bolts									
b) Keys, cotter joints and knuckle jo	int.								
c) Riveted joints for plates									
Unit -2	.								
Drawing of Machine Elements an	d simple parts								
Selection of views, additional views	for the following r	nachine elements	10						
and parts.	• • • ·		10						
a) Shaft coupling, spigot and socket	pipe joint.								
b) Journal, pivot and collar and too	t step bearings.								
Unit – 3									
Assembly Drawing - I									
Drawings of assembled views for the	part drawings of t	he following using							
conventions.			10						
Engine parts – Stuffing Box, Petrol B	Engine connecting	rod, Cross Heads,							
Piston Assembly									
Unit – 4									
Assembly Drawing - II									
Drawings of assembled views for the	part drawings of t	he following using							
conventions.			10						
Machine parts - screws jack, mac	chine vices, Plum	ner Block, Lathe							
Tailstock.									
Unit – 5									
Assembly Drawing - III									
---	----------								
Drawings of assembled views for the part drawings of the following using	l								
conventions.	10								
Valves: Steam stop valve, Spring loaded safety valve, Feed check valve	l								
and Air cock.	L								
COURSE OUTCOMES:									
On completion of the course, student will be able to									
1. Identify the national and international standards pertaining to m drawing.	lachine								
2. Illustrate various machine components through drawings.									
3. Construct an assembly drawing of a machine unit									
4. Interpret a set of working drawings of a machine assembly including	g detail								
drawings, bill of materials, part specifications									
5. Analyze the part or assembly drawings as per the conventions.									
Question paper pattern:									
Section A:									
1. This section contains three questions carrying 10 marks each.									
2. Answer any Two questions in Section- A 10 x 2 = 20 marks.									
Section B:									
1. Question from Section-B is compulsory – 50 x 1= 50 marks									
Text Books:									
1. Machine Drawing – N.Siddeswar, K.Kannaiah & V.V.S.Sastry – TMH									
2. Machine Drawing -K.L.Narayana, P.Kannaiah & K. Venkata Reddy	/ New								
Age/ Publishers									
Reference Books:									
1. Production and Drawing – K.L. Narayana & P. Kannaiah/ New Age									
2. Machine Drawing – P.S.Gill									

- Machine Drawing P.S.Gill
 Machine Drawing N.D. Junnarkar, Pearson
 Machine Drawing Ajeeth Singh, McGraw Hill

	PO	PSO	PSO											
C0/P0	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	1		2							1		1	1	
2	1		2							1		1	1	
3	2		2							1		2	1	
4	2		2							1		2	1	
5	1		2							1		2	1	
Course	1		2							1		2	1	

COURSE STRUCTUREAND SYLLABUS SITE-21 REGULATIONS

For III B.Tech. VI Semester Mechanical Engineering

S.No.	CC	Course Code	Course Title	L	Т	Ρ	Cr
1	PCC	21MEMET6010	CAD/CAM/CIM	3	0	0	3
2	PCC	21MEMET6020	Finite Element Methods	3	0	0	3
3	PCC	21MEMET6030	Heat Transfer	3	0	0	3
4	PEC	21MEMEP604X	Professional Elective-II	3	0	0	3
5	OEC	21MEXXO605X	Open Elective Course-II	3	0	0	3
6	PCCL	21MEMEL6060	CAD/CAM Lab	0	0	3	1.5
7	PCCL	21MEMEL6070	Heat Transfer Lab	0	0	3	1.5
8	PCCL	21MEMEL6080	Instrumentation and	0	0	3	1.5
			Mechatronics Lab				
9	SOC	21CMAHS6090	Soft Skills & Aptitude	1	0	2	2
			Builder - 2				
10	MC	21CMBIN6100	Biology for Engineers	2	0	0	0
11	I/DI	Research Interns	ship - 2 Months (Mandatory) afte	r Tl	hirc	l ye	ear (to
11	1/ 1/1	be evaluated dur	ring VII semester				
		Т	otal Credits				21.5
			Honors/Minor courses (The				
12	H/M		hours distribution can be 3-0-	4	0	0	4
			2 or 3-1-0 also)				

III B. Tech. VI Semester Course Structure for the Regulation SITE 21

Professional Elective-II

S.	СС	Subject Code	Name of the subject	L	Т	Ρ	Cr
No.							
1		21MEMEP604A	Gas Dynamics and Jet	3	0	0	3*
			Propulsion				
2		21MEMEP604B	Mechanical Vibrations	3	0	0	3*
3	DEC	21MEMEP604C	Instrumentation and	3	0	0	3*
	PEC		Mechatronics				
4		21MEMEP604D	Unconventional Machining	3	0	0	3*
			Processes				
5		21MEMEP604E	Energy Management	3	0	0	3*
NPTEI	J/SWAYAM/	MOOCs (Course o	f 12 Weeks duration) to be offe	red			

CA	AD/CAM/CIM EMESTER - VI		
Subject Code	21MEMET6010	Internal Marks	30
Number of Lecture Hours /	3(L)	External Marks	70
Week Total Number of Lecture Hours	F0	Errom Hours	02
Total Number of Lecture Hours	00 Decision 02	Exam Hours	03
Course Objectives:	cieuits - 03		
Enable the students to			
1 Describe the structure and us	age of a graphic sv	stem in an industr	v hv the
knowledge gained on CAD/CAN	A systems		y sy ene
2. Use the knowledge on curves	in calculating the	e and data points	used in
generating various curves with	the help of modeli	ng software and ge	neration
techniques.	1	0 0	
3. Outline the working and appli	ication of NC mach	nines and develop	the part
programs necessary for manufa	acturing a machine	component using I	NC/CNC
machines	-		-
4. Modify the conventional manu	facturing system	to an organized sys	stem for
increasing the production us	ing proper planni	ing and group teo	hnology
techniques.			
5. Demonstrate the implementation	ion of CAD/CAM t	echniques in a co	mpletely
integrated manufacturing indu	stry using CAQC a	nd CIM knowledge	
Unit -1			Hours
Introduction to CAD/CAM:	Introduction to (CAD/CAM/CIM,	
Sequential and concurrent eng	ineering Fundame	entals of CAD,	
Product cycle, Design process, CA	D/CAM hardware		10
Fundamentals of Computer (Graphics: Raster	scan graphics	10
coordinate system, Database s	tructure for grap	onics modeling,	
Transformations of Geometry	Translation Soul	ing Deflection	
Pototion Homogeneous repr	resentation of	transformation	
Concatenation of transformations	cscination of		
Unit -2			
Geometric Modelling of Curves	Wire frame mode	lling Wireframe	
entities. Curve representation. Par	rametric represent	ation of analytic	
curves. Parametric representation	of Hermite cubic st	oline. Bezier and	
B-spline curves.			10
Geometric Modelling of Surface	s: Surface modelin	g, Basic surface	12
entities, Parametric representation	n of analytic & Synt	thetic surfaces.	
Geometric Modelling of Solids	s: Solid modeling,	Solid entities,	
Boolean operations, Boundary rep	resentation of Solid	Modelling, CSG	
approach of Solid Modelling.			
Unit – 3			
DRAFTING AND MODELING SYS'	TEMS: Basic geome	etric commands,	12
layers, display control comman	ds, editing, dime	ensioning, solid	

modelling. Computer Aided Manufacturing (CAM): Introduction to Computer Numerical Control (CNC), Basic components of NC system, NC coordinate system, Motion control systems, Feedback devices, CNC tooling, features of machining center, turning center. CNC Programming: Part programming fundamentals, Manual Part Programming, Computer assisted part programming, APT Programming, Geometric & motion commands, Post processor	
commands.	
Unit – 4 Crown Technology Introduction, north families, north classification	<u></u>
and coding, features of parts classification of coding system, OPITZ, MICLASS and Production Flow Analysis, composite part concept, machine cell design and applications. Computer Aided Process Planning (CAPP) : Introduction to CAPP, Variant & Generative methods of CAPP, Benefits of CAPP.	10
Unit – 5	<u></u>
Computer Aided Quality Control: Introduction, Terminology in Quality control, Computer in QC, contact and noncontact inspection techniques, computer aided testing, integration of CAQC with CAD/CAM. Computer Integrated Manufacturing Systems (CIMS): Introduction to CIM, Scope of CIM, Types of manufacturing systems, machine tools and related equipment, material handling systems, material requirement planning, computer control systems, human labor in manufacturing systems, CIMS benefits.	10
Course outcomes:	
 Demonstrate computer graphic system used for design & manufal industries for production and services. Develop newly transforms entities for 2D, 3D representations and of curves, surfaces and solids entities for a graphic system mathematical modeling techniques for a computer graphic system. Develop designs and suitable part programs for working of a NC/ machine for machining any given component using the knowledge the design tools and CNC machines. Choose the best production system applicable for manufacturing component using the planning and group technology techniques Examine the adaptable automation in a manufacturing system for the production using the computer aided quality control and integrated manufacturing techniques 	acturing in generation using the CNC/DNC gained on a machine increasing computer
TEXT BOOKS:	o
 CAD/CAM- Computer Aided Design & Manufacturing/M.D. Groov Zimmer. CAD/CAM/Ibrahim Zeid/Tata McGrawhill, Delhi. 	ver & E.W.

REFERENCES:

- 1. CAD/CAM/CIM/Radhakrishna/New age international.
- 2. CAD/CAM/P.N.Rao/Tata McGrawhill , Delhi
- **3.** CAD/CAM/CIM/P. Radhakrishna & S. subramanyan

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

CO/PO	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	3	2			1									2
2	3	3	2		2							2		2
3	3	2	1		2							2	3	
4	2	2	1		2							1	3	
5	3	2			3							2	3	2
Course	3	3	1		3							2	2	2

FINITE ELE SEME	MENT METHODS CSTER - VI			
Subject Code	21MEMET6020	Internal Mark	s	30
Number of Lecture Hours/Week	3(L)	External Mark	s	70
Total Number of Lecture Hours	50	Exam Hours		03
Cre	dits - 03			
Course Objectives:				
Students will be able to				
1. Understand basic principles an	d procedure of finit	e element analys	sis.	
2. Study the theory and charact	eristics of finite e	lements that re	pre	sent
engineering structures.				
3. Apply finite element solutions to	o structural, therm	al, dynamic prot	olen	n.
4. Solve the complex geometry pro	blems and solution	techniques.		
5. Understand the concept of dyna	amic analysis in fin	ite element meth	lods	s.
Unit -1			Но	urs
INTRODUCTION : Introduction to fir	nite element metho	od, stress and		
equilibrium, strain-displacement re	lations, stress-str	ain relations,		
plane stress and plane strain cond	itions, variational	and weighted	1	0
residual methods, concept of potenti	ial energy, Formul	ation of Finite	-	
element characteristic matrices and	vectors (Element S	tiffness Matrix		
and Load Vectors), Assembly of elem	ent stiffness for on	e dimensional		
problem.				
Unit -2		<u> </u>		
FINITE ELEMENT FORMULATIO	N: Concept of	discretization,		
Interpolation, Compatibility, Assemb	ly and boundary c	onsiderations.		-
Shape functions for one dimensional	quadratic and cub	ic elements in	8	8
natural coordinates, treatment of bo	undary conditions	, Temperature		
effects, node numbering, mesh genera	tion, local and glob	al coordinates,		
convergence requirements.				
Unit – 3	<u>.</u>			
Analysis of Plane Irusses: Plan	e Irusses, Local	and Global		
Example of plane Trace with three me	ess Mainx, Siress	Calculations,	1	0
Analyzia of Poame: Two node ha	om Flomont chor	a functions	L	.4
element stiffness matrix and load yea	tora simple proble	me on beems		
with distributed and point loads	tors, simple proble			
Init – 4				
Finite element modeling of two-di	mensional stress	analysis with		
constant strain triangles Shape function	tions of CST element	anarysis with		
Higher Order and Iso Parametric I	Elements. Two dir	nensional four	1	0
nodded isoperimetric elements Lagra	ngian internolation	functions and	1	
Numerical Integration	ingram mici polation			
Unit – 5				
Steady State Heat Transfer Analysi	s: one dimensional	analysis of a	1	0

Course Ou CO/PO	itcon PO 1	nes to PO 2	PO PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Course Ou	atcon	$\frac{1}{PO}$		DO DO					DO	PO	PO	PO	DSO	DSO
			- P	~~~~	n (),,,	tcom	1 PG 1	nanniı	าสา					
outcome.														
3. Each full question will have sub question covering all topics under a course														
2. All ques	stions	s carr	ies 1	4 ma	arks e	each.								
course	outo	ome	Inter	rnal (Choic	ce).		-) 201	0		1-1-0-0			
studen	it mu	ist an	Iswei	r 5 fi	ull ai	iestic	ons	by sele	ecting	one	quest	tion	from	each
1. Ouesti	ion n	aper	cont	ains	10 C	Juest	ions	. 2 fro	om ea	ch co	ourse	outo	come.	The
Ouestion	nana	ar not	tern	u IX.	<i>L</i> , 10	<i>xy</i> 101	, 1.11			1010	mous	, D	ALLUI M	Jun
2 \mathbf{R} \mathbf{D} \mathbf{C}	7ienle	ienvior		d D	τ T	avlor	ог 5 ₄ ;4	uloor nite F	lemen	το, 00 τ Με	thode	ncyc x Di	1440118	vorth
1. 0.0. Da	nolz I	linita	Flow		Mode	ling	for Q	trena /	malvo	ia In	hn W		Sone	Inc
I SS R		שטט ati גי	nite 1	Elem	ent A	nalv	cic 1	New or	re Duit	liche	re			
Prentic			170											
4. Chana	irapu		Bele	guna	iu, in	itroa	uctio	n to F	inite	Eleme	ents i	n En	ginee	rıng,
3. S.S.Ra	io,The		te El	emer	it Me	thod	in Ei	nginee	rıng, .	3ra., I	Butte	r woi	rth	
2. P.Sesn	iu. ie		OK 0	I Fini		emer	it Ar	ialysis	, Pren				. 1	
1. J.N. Re	eaay,	An Ir	ntrod		on to	Finit	e Ele	ement	Metho	od, Ta	ata M	cGra	W H11	L
TEXT BO	OKS	л т		. ,•		D ¹ · ·	D 1		N <i>T</i> (1	1 0		0	T T '1'	1
5. Apply 1	the d	ynam	ic ar	nalysi	is on	varic	ous t	eam e	lemer	nts.				
numer	ical i	ntegra	ation	IS.										
4. Apply	one	dimer	nsion	ial qu	uadra	atic e	equa	tion o	n isor	baram	netric	elen	nents	and
3. Differe	entiat	e and	ana	lyse d	differ	ent ty	ypes	of tru	sses a	nd be	eams.			
2. Apply :	and s	solve o	differ	ent e	eleme	nt sh	ape	s using	g stiffr	ness r	natriz	x.		
relatio	ns on	a pa	rticu	lar o	biect	usin	g FE	M met	hods.	1014			<u></u>	
1 Identif	v an	d for	mula	te di	iffere	nt st	ress	and	strain	relat	tions	dist	olacei	ment
On the co	utcol	nes:	fthi	0.0011	1roo	otuda	onto	ore ob	le to					
Eigen vec	tors,	tree v	ibrat	tion a	analy	S1S.								
consisten	t and	lum	ped r	nass	mati	rices,	eva	luatio	n of E	igen v	value	s and	1	
Dynamic	Ana	lysis	: Fo	rmul	ation	of	finit	e elen	nent	mode	l, ele	emen	t	
shaft sub	jecteo	1 to to	orsio	n.										
fin and tv	wo-an	mens	uuial	ana	19515	01 11	P	iuce, u			~ ~ ~ ~ ~	101111		

1	3	3	3		2				2
2	3				2				
3	3	3	3		2				2
4	3	3			2				2
5	3	3			2				2
Course	3	2	2		2				2

HEA	AT TRANSFER		
SE	MESTER - VI		•
Subject Code	21MEMET6030	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Course Objectives:			
Enable the students to			
1. Understand the modes of hea	t transfer and th	eir applications in	different
energy systems.		TT	
2. Gain the knowledge on effectiv	veness and efficien	ncy of fins for vari	ious heat
transfer applications.		5	
3. Understand the concepts of co	ontinuity, moment	um and energy pri	nciples of
fluid flow problems in heat tr	ansfer.		-
4. Select appropriate correlation	ns to evaluate he	eat transfer coeffic	cients for
forced and natural convection o	ver exterior surfac	ces and flow throug	gh pipes.
5. Acquire the knowledge on heat	t exchanger perfor	mance by using L	MTD and
NTU methods and Familiarize r	adiation heat tran	nsfer concepts of bl	ack body
surfaces and gray body surfaces	8		
Unit -1			Hours
Introduction: Modes and mechar	nisms of heat tran	sfer – basic laws o	of
heat transfer – General discussion	about application	is of heat transfer.	
Conduction Heat Transfer: Fo	urier rate equati	on – general hea	ıt
conduction equation in Cartesian,	cylindrical and sp	herical coordinates	3.
Steady, unsteady and periodic h	ieat transfer – in	itial and boundar	y 10
conditions.			10
One Dimensional Steady State	Heat Conduction	n: Conductive hea	it
transfer through slab, cylinder, s	sphere – Homoger	neous slabs, hollow	N
cylinders – overall heat transfer co	pefficient- critical	radius of insulation	n
- Variable thermal conductivity -	- systems with he	eat sources or hea	it
generation			
	1	····	
Extended Surfaces (Fins): Type	s, applications, i	in materials, heat	
transfer from fins with uniform cros	ss section – long Iir	1, IIN WITH INSULATED	1
tip and short in, Fin enciency an	a Ellectiveness – a	application to error	10
One Dimensional Transient C	anduction. Jum	nod hoot concrit	
one Dimensional Hansient C	Fourier numbers	obort colutions of	y .f
transient conduction systems	rouner numbers	- chart solutions (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Init _ 2			
Convection: Dimensional analysis	- Buckinghom Di	Theorem for force	4
and free convection - non-dimension	onal numbers and	their significance	_ 10
concepts of continuity momentum	and energy equat	tions	10
Forced Convection: Concepts	about hvdrodvn	amic and therms	1

boundary layers and their thicknesses – use of empirical correlations for	
convective heat transfer – flat plates, cylinders, horizontal pipe flow and	
Init – 4	
Natural Convection: Development of hydrodynamic and thermal	
 boundary layer along a vertical plate – use of empirical relations for vertical plates and cylinders, horizontal plates and cylinders. Boiling: Pool boiling – regimes- calculations on nucleate boiling, critical heat flux and film boiling. Condensation: Film wise and drop wise condensation –Nusselt"s theory of condensation on a vertical plate. 	10
borizontal cylinders using empirical correlations	
Infizontal cylinders using empirical correlations.	
Heat Exchangers: Classification of heat exchangers, temperature distribution, – overall heat transfer coefficient, fouling factor –concepts of LMTD and NTU methods – Effectiveness of the heat exchanger. Radiation Heat Transfer: Basic concepts and definitions: Absorptivity, Reflectivity, Transmissivity – concept of black body – Laws of radiation – heat transfer between two finite black surfaces and two grey surfaces – concept of shape factor – Emissivity — radiation shields.	10
 After the completion of the course students will be able to 1. Formulate heat transfer conduction equations on engineering systems 2. Analyze the conduction and convection heat transfer coefficients on fine are used in real time applications. 3. Solve fluid flow problems using continuity, momentum and energy print 4. Evaluate heat transfer coefficients for forced convection and convection. 5. Determine heat exchanger performance and effectiveness by usi method of LMTD & NTU and calculate the radiation heat transfer b black body & gray body surfaces. 	s. s which nciples. natural ng the petween
 TEXT BOOKS: T1: Fundamentals of Engg. Heat and Mass Transfer / R. C. Sachdeva / N International. T2: Heat and Mass Transfer – R. K. Rajput / S. Chand revised 9th edition 	lew Age
 REFERENCE BOOKS: R1: Heat and Mass Transfer –Cengel- McGraw Hill R2: Heat and Mass Transfer – Arora and Domkundwar, Dhanpatrai & So R3: Heat and mass transfer - D.S.Kumar, katson publishers. Note: Heat and Mass transfer Data Book by C P Kothandarama Subrahmanyan is used to design and analyze various thermal process thermal equipment. 	ons. un and ses and

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO	PO 10	PO	PO 12	PSO 1	PSO
	*	4	3	-	3	0	1	0	2	10	11	14	1	4
1	3	3	3									2	2	3
2	2	3	2									2	2	2
3	3	3	2									3	2	3
4	3	2	2									2	2	3
5	3	3	3									3	2	3
Course	3	3	2									3	2	3

GAS DYNAMICS	S AND JET PROP	PULSION	
Subject Code	MESIER - VI	Intornal Marina	20
Number of Lecture	ZIMEMEF004A	Internal marks	30
Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
Ċ	Credits – 03		
Course Objectives 1. To understand the basic princip 2. To analyze flow with normal and 3. To understand about Simple frid 4. To Examine the effect of heat tra equations 5. To understand and analyze the Propulsion, - thrust equation - effe engine performance.	le of Gas Dynami l Oblique shocks ctional flow: adiat ansfer on flow par basic principle an ective jet velocity -	cs patic flow with friction rameters, Rankine Hu id importance of Jet specific impulse - roo	l Igoniat cket
Unit -1			Hours
control volume and system approace Mach number - classification of fluc cone compressibility factor - gener a compressible fluid - continuity ar volume.	ch acoustic waves id flow based on M al features of one nd momentum eq	s and sonic velocity - Mach number - Mach -dimensional flow of uations for a control	10
Unit -2			
basic equation - stagnation enthal stagnation, acoustic speed - crit velocity governing equations for ise flow area - stream thrust and impu- isentropic flow with area change-eff chocking- convergent nozzle - perfe back pressure -De Lavel nozzle - pressure - nozzle discharge coeffici	by, temperature, p ical speed of so entropic flow of a alse function. Stea fect of area change ormance of a nozz - optimum area ients - nozzle effic	pressure and density und- dimensionless perfect gas - critical ady one-dimensional e on flow parameters ale under decreasing ratio effect of back eiencies.	10
Unit – 3			
adiabatic flow with friction in a con- Fanno line limiting conditions - e in an Isothermal flow with friction equations - limiting conditions. St transfer in constant area ducts- entropy change caused by heat enthalpy and entropy	nstant area duct- ffect of wall friction n in a constant ceady one-dimens governing equati transfer - cond	governing equations on on flow properties area duct-governing ional flow with heat ons – Rayleigh line itions of maximum	10
Unit – 4			
Intersection of Fanno and Rayleig properties of flow across a normal s Hugoniat equations - Prandtl veloc nozzle flow with shock thickness -	h lines. Shock w shock - governing ity relationship - shock strength.	aves in perfect gas- equations - Rankine converging diverging	10

Jet Propulsion: Theory of jet propulsion – Thrust equation – Thrust power and propulsive efficiency – Operating principle, cycle analysis and use of stagnation state performance of ram jet, turbojet, turbofan and turbo prop engines. Types of rocket engines – Propellants-feeding systems – Ignition and combustion – Theory of rocket propulsion – Performance study – Staging – Terminal and characteristic velocity – Applications – space flights.	0
Course outcomes:	
At the end of the course, the student will be able to:	
1. Solve flow equations for quasi one-dimensional flow through variable an	rea
ducts.	
2. Analyze the flow through constant area ducts with friction and heat transfe	er.
3. Analyze flows with normal and oblique shocks.	
4. Solve flow problems with Rankine Hugoniat equations and Prandtl veloc	city
relationship.	
5. Analyze the performance of tubro propeller engines.	
1. Compressible fluid flow /A. H. Shapiro / Ronald Press Co., 1953	ъл
2. Fundamentals of compressible flow with aircraft and rocket propulsion/S.	IVI.
Yanya/ New Age international Publishers	
3. Fundamental of Gas dynamics-2nd edition/ M J Zucker/ whey publishers	S
1 Cas dynamics / M I Zucrowscamp: Ice D Holfman / Krieger Dublishers	
2 Gas dynamics and let propulsion /PR S I Somesundaram/New of	0.00
international Publisher	agu
3 Thermal Engineering /R K Rainut	
Ouestion namer nattern:	
1 Question paper contains 10 Questions 2 from each course outcome T	Гhе
student must answer 5 full questions by selecting one question from ea	ach
course outcome (Internal Choice)	2011
2. CO1- CO5 questions carries 14 marks each.	
3. Each full question will have a sub question covering all topics under a court	rse
outcome.	
Course Outcomes to Program Outcomes mapping:	
CO/PO PO P	'SO
	0

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	3	3	1	-			-						3	
2	3	3	2										3	
3	3	3	1									1	3	
4	3	1	1									1	3	
5	2	2										1	2	
Course	3	2	1									1	3	

Subject Code21MEMEP604BInternal Marks30Number of Lecture Hours/Week3 (L)External Marks70Total Number of Lecture Hours50Exam Hours03Credits - 03COURSE OBJECTIVES: The students should be able to031. Analyze the various 1-D periodic responses of a vibrating system with and without damping032. Learn to derive the equations of motion and solution for Two and multi degree freedom systems by the application of analytical methods15 natural frequency of multi degree freedom systems.3. Understand the numerical methods for quick estimation of 1st natural frequency of multi degree freedom systems.Hours5. Learn to solve vibrations problems of continuous systems.HoursSingle degree of Freedom systems: Undamped and damped free vibrations: forced vibrations; coulomb damping; Response to harmonic excitation; rotating unbalance and support excitation, Vibration isolation and transmissibility10Unit -2Vibration Measurement: Vibrometers, velocity meters & accelerometers Two degree of freedom systems: Principal modes - undamped and damped free and forced vibrations; undamped vibration absorbers.10Unit - 3Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibrations of wibration subarion systems12Multi degree of freedom systems; Discrete Time systems10Unit - 4Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods.10Unit - 5COURSE OUTCOMES: The students will be able to10Analyze the va	MECHAN SEI	ICAL VIBRATIONS MESTER - VI			
Number of Lecture Hours/Week3 (L)External Marks70Total Number of Lecture Hours50Exam Hours03Credits - 03COURSE OBJECTIVES: The students should be able to1. Analyze the various 1-D periodic responses of a vibrating system with and without damping2. Learn to derive the equations of motion and solution for Two and multi degree freedom systems by the application of analytical methods3. Understand the numerical methods for quick estimation of 1st natural frequency of multi degree freedom systems.4 Have the knowledge of the various physical vibration measuring instruments.5. Learn to solve vibrations problems of continuous systems.MoursSingle degree of Freedom systems: Undamped and damped free vibrations: forced vibrations; coulomb damping; Response to harmonic excitation; rotating unbalance and support excitation, Vibration isolation and transmissibility10Vibration Measurement: Vibrometers, velocity meters & accelerometers Two degree of freedom systems; Principal modes - undamped and damped free and forced vibrations; undamped vibration absorbers.10Unit - 3Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibrations of multi - rotor systems and geared systems; Discrete Time systems10Unit - 4Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods.10Unit - 4COURSE OUTCOMES: The students will be able to10COURSE OUTCOMES: The students will be able to1010Analyze the various 1-D periodic responses of a vibrating system with and without damping. <td>Subject Code</td> <td>21MEMEP604B</td> <td>Internal</td> <td>Marks</td> <td>30</td>	Subject Code	21MEMEP604B	Internal	Marks	30
Total Number of Lecture Hours50Exam Hours03Credits - 03COURSE OBJECTIVES: The students should be able to1. Analyze the various 1-D periodic responses of a vibrating system with and without damping2. Learn to derive the equations of motion and solution for Two and multi degree freedom systems by the application of analytical methods3. Understand the numerical methods for quick estimation of 1st natural frequency of multi degree freedom systems.4 Have the knowledge of the various physical vibration measuring instruments.5. Learn to solve vibrations problems of continuous systems.Unit -1Single degree of Freedom systems: Undamped and damped free vibrations: forced vibrations; coulomb damping; Response to harmonic excitation; rotating unbalance and support excitation, Vibration isolation and transmissibilityUnit -2Vibration Measurement: Vibrometers, velocity meters & 	Number of Lecture Hours/Week	3 (L)	External	Marks	70
Credits - 03 COURSE OBJECTIVES: The students should be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping 2. Learn to derive the equations of motion and solution for Two and multi degree freedom systems by the application of analytical methods 3. Understand the numerical methods for quick estimation of 1st natural frequency of multi degree freedom systems. 4 Have the knowledge of the various physical vibration measuring instruments. 5. Learn to solve vibrations problems of continuous systems. 4 Have the knowledge of the various physical vibration measuring instruments. 5. Learn to solve vibrations; coulomb damping; Response to harmonic excitation; rotating unbalance and support excitation, Vibration isolation and transmissibility 8 Vibration Measurement: Vibrometers, velocity meters & accelerometers Two degree of freedom systems: Principal modes – undamped and damped free and forced vibrations; undamped vibration absorbers. 10 Unit - 3 Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations point wibrations of bars - transverse vibration of strings – longitudinal oscillations of bars - transverse vibrations of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed. 10 COURSE OUTCOMES: The students will be ab	Total Number of Lecture Hours	50	Exam Ho	urs	03
COURSE OBJECTIVES: The students should be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping 2. Learn to derive the equations of motion and solution for Two and multi degree freedom systems by the application of analytical methods 3. Understand the numerical methods for quick estimation of 1st natural frequency of multi degree freedom systems. 4 Have the knowledge of the various physical vibration measuring instruments. 5. Learn to solve vibrations problems of continuous systems. Unit -1 Hours Single degree of Freedom systems: Undamped and damped free vibrations: forced vibrations; coulomb damping; Response to harmonic excitation; rotating unbalance and support excitation, Vibration isolation and transmissibility 8 Vibration Measurement: Vibrometers, velocity meters & accelerometers Two degree of freedom systems: Principal modes – undamped and damped free and forced vibrations; undamped vibration absorbers. 10 Unit - 3 10 Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibrations so for multi - rotor systems and geared systems; Discrete Time systems 12 Multi degree of freedom and tangle's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods. 10 Unit - 4 10 Course Ourcomer	Credits - 03				
1. Analyze the various 1-D periodic responses of a vibrating system with and without damping 2. Learn to derive the equations of motion and solution for Two and multi degree freedom systems by the application of analytical methods 3. Understand the numerical methods for quick estimation of 1st natural frequency of multi degree freedom systems. 4 Have the knowledge of the various physical vibration measuring instruments. 5. Learn to solve vibrations problems of continuous systems. Unit -1 Hours Single degree of Freedom systems: Undamped and damped free vibrations: forced vibrations; coulomb damping; Response to harmonic excitation; rotating unbalance and support excitation, Vibration isolation and transmissibility 8 Vibration Measurement: Vibrometers, velocity meters & accelerometers Two degree of freedom systems: Principal modes – undamped and damped free and forced vibrations; undamped vibration absorbers. 10 Unit -3 Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by modal analysis; Method of matrix inversion; Torsional vibrations of multi – rotor systems and geared systems; Discrete Time systems 10 Unit -4 Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods. 10 Unit -5 Application of concepts: Free vibration of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed. 10	COURSE OBJECTIVES: The studen	ts should be able to)		
 Learn to derive the equations of motion and solution for Two and multi degree freedom systems by the application of analytical methods Understand the numerical methods for quick estimation of 1st natural frequency of multi degree freedom systems. Have the knowledge of the various physical vibration measuring instruments. Learn to solve vibrations problems of continuous systems. Unit -1 Hours Single degree of Freedom systems: Undamped and damped free vibrations: forced vibrations; coulomb damping; Response to harmonic excitation; rotating unbalance and support excitation, Vibration isolation and transmissibility Unit -2 Vibration Measurement: Vibrometers, velocity meters & accelerometers Two degree of freedom systems: Principal modes – undamped and damped free and forced vibrations; undamped ibration absorbers. Unit - 3 Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibrations of multi - rotor systems and geared systems; Discrete Time systems Unit - 4 Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods. 10 10 10 10 10 	1. Analyze the various 1-D period without damping	ic responses of a v	ibrating sy	vstem wi	th and
3. Understand the numerical methods for quick estimation of 1st natural frequency of multi degree freedom systems. 4 Have the knowledge of the various physical vibration measuring instruments. 5. Learn to solve vibrations problems of continuous systems. Hours Single degree of Freedom systems: Undamped and damped free vibrations: forced vibrations; coulomb damping; Response to harmonic excitation; rotating unbalance and support excitation, Vibration and transmissibility 8 Vibration Measurement: Vibrometers, velocity meters & accelerometers Two degree of freedom systems: Principal modes – undamped and damped free and forced vibrations; undamped vibration absorbers. 10 Unit - 3 Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations of multi – rotor systems and geared systems; Discrete Time systems 10 Unit - 4 Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods. 10 Unit-5 Application of concepts: Free vibration of strings – longitudinal oscillations of bars - transverse vibrations of beams - Torsional vibrations of bars - transverse vibrations of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed. 10 COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.	2. Learn to derive the equations of freedom systems by the applicat	motion and solutior ion of analytical me	n for Two a ethods	nd multi	degree
4 Have the knowledge of the various physical vibration measuring instruments. 5. Learn to solve vibrations problems of continuous systems. Unit -1 Hours Single degree of Freedom systems: Undamped and damped free vibrations; forced vibrations; coulomb damping; Response to harmonic excitation; rotating unbalance and support excitation, Vibration isolation and transmissibility 8 Vibration Measurement: Vibrometers, velocity meters & accelerometers Two degree of freedom systems: Principal modes – undamped and damped free and forced vibrations; undamped vibration absorbers. 10 Unit - 3 Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations of multi – rotor systems and geared systems; Discrete Time systems 10 Unit - 4 Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods. 10 Unit-5 Application of concepts: Free vibration of strings – longitudinal oscillations of bars - transverse vibrations of beams - Torsional vibrations, secondary critical speeds without and with damping, secondary critical speeds. 10 COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.	3. Understand the numerical me frequency of multi degree freedo	thods for quick e m systems.	stimation	of 1st 1	natural
3. Exam to solve vibrations problems of continuous systems. Hours Single degree of Freedom systems: Undamped and damped free vibrations: forced vibrations; coulomb damping; Response to harmonic excitation; rotating unbalance and support excitation, Vibration isolation and transmissibility 8 Vibration Measurement: Vibrometers, velocity meters & accelerometers Two degree of freedom systems: Principal modes – undamped and damped free and forced vibrations; undamped vibration absorbers. 10 Unit - 3 10 Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations of multi – rotor systems and geared systems; Discrete Time systems 12 Unit - 4 Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods. 10 Unit - 5 Application of concepts: Free vibration of strings – longitudinal oscillations of bars - transverse vibrations of beams - Torsional vibrations geeondary critical speeds without and with damping, secondary critical speeds. 10 COURSE OUTCOMES: The students will be able to 10 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping. 10	4 Have the knowledge of the variou	s physical vibration	measurin	g instrur	nents.
Single degree of Freedom systems: Undamped and damped free vibrations: forced vibrations; coulomb damping; Response to harmonic excitation; rotating unbalance and support excitation, Vibration isolation and transmissibility8Unit -2Vibration Measurement: Vibrometers, velocity meters & accelerometers Two degree of freedom systems: Principal modes – undamped and damped free and forced vibrations; undamped vibration absorbers.10Unit - 3Multi degree of freedom systems: Matrix formulation, stiffness 	Unit -1	ins of continuous sy	stems.	Но	urs
free vibrations: forced vibrations; coulomb damping; Response to harmonic excitation; rotating unbalance and support excitation, Vibration isolation and transmissibility8 Vibration Measurement : Vibrometers, velocity meters & accelerometers Two degree of freedom systems: Principal modes – undamped and damped free and forced vibrations; undamped vibration absorbers.10 Unit -2Vibration Measurement : Vibrometers, velocity meters & accelerometers Two degree of freedom systems: Principal modes – undamped and damped free and forced vibrations; undamped vibration absorbers.10 Unit -3Multi degree of freedom systems : Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations of multi – rotor systems and geared systems; Discrete Time systems12 Unit -4Numerical Methods : Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods. Unit-5Application of concepts : Free vibration of strings – longitudinal oscillations of bars - transverse vibrations of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed.10 COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.	Single degree of Freedom system	ns : Undamped and	l damped	110	u10
excitation, Vibration isolation and transmissibility Intervention of transmissibility Unit -2 Vibration Measurement: Vibrometers, velocity meters & accelerometers Two degree of freedom systems: Principal modes - undamped and damped free and forced vibrations; undamped vibration absorbers. 10 Unit - 3 Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations of multi - rotor systems and geared systems; Discrete Time systems 12 Unit - 4 Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods. 10 Unit-5 Application of concepts: Free vibrations of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed. 10 COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.	free vibrations: forced vibrations; o	coulomb damping;	Response	8	3
Unit -2Vibration Measurement: Vibrometers, velocity meters & accelerometers Two degree of freedom systems: Principal modes – undamped and damped free and forced vibrations; undamped vibration absorbers.10Unit - 3Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations of multi - rotor systems and geared systems; Discrete Time systems12Unit - 4Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods.10Unit-5Application of concepts: Free vibration of strings - longitudinal oscillations of bars - transverse vibrations of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed.10COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.10	excitation, Vibration isolation and t	ransmissibility	Support		
VibrationMeasurement:Vibrometers, velocity meters & accelerometers Two degree of freedom systems: Principal modes – undamped and damped free and forced vibrations; undamped vibration absorbers.10Unit - 3Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations of multi - rotor systems and geared systems; Discrete Time systems12Unit - 4Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods.10Unit-5Application of concepts: Free vibrations of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed.10COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.10	Unit -2	5			
- undamped and damped free and forced vibrations; undamped vibration absorbers.10Unit - 3Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations of multi - rotor systems and geared systems; Discrete Time systems12Unit - 4Image: Coefficients interaction of systems and geared systems; Discrete Time systems10Unit - 4Image: Coefficients interaction of strings - longitudinal oscillations of bars - transverse vibrations of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed.10COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.10	Vibration Measurement : Vibror accelerometers Two degree of freedo	neters, velocity n om systems: Princir	neters & al modes		
vibration absorbers.Image: Constant of the students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.	– undamped and damped free and	forced vibrations; u	ndamped	1	0
Unit - 3Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations 	vibration absorbers.		_		
Multi degree of freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations of multi – rotor systems and geared systems; Discrete Time systems12Unit - 4Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods.10Unit-5Application of concepts: Free vibration of strings – longitudinal oscillations of bars - transverse vibrations of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed.10COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.10	Unit - 3				
Inormal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix inversion; Torsional vibrations of multi – rotor systems and geared systems; Discrete Time systems12Unit - 4Image: Constraint of the system of the s	Multi degree of freedom systems : and flexibility influence coefficie	Matrix formulation nts; Eigen value	, stiffness problem;		
of multi – rotor systems and geared systems; Discrete Time systems Unit - 4 Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods. Unit-5 Application of concepts: Free vibration of strings – longitudinal oscillations of bars - transverse vibrations of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed. COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.	Modal analysis; Method of matrix in	version; Torsional v	vibrations	12	2
systems Unit - 4 Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods. 10 Unit-5 Application of concepts: Free vibration of strings – longitudinal oscillations of bars - transverse vibrations of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed. 10 COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.	of multi – rotor systems and gea	red systems; Disci	rete Time		
Unit - 4Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods.10Unit-5Application of concepts: Free vibration of strings – longitudinal oscillations of bars - transverse vibrations of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed.10COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.10	systems				
Numerical Methods: Rayleigh's, stodola's, Matrix iteration, Rayleigh-Ritz Method and Holzer's methods. 10 Unit-5 Application of concepts: Free vibration of strings – longitudinal oscillations of bars - transverse vibrations of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed. 10 COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.		. 1 1 2 3.6	•, ,•		
Unit-5 Application of concepts: Free vibration of strings – longitudinal oscillations of bars - transverse vibrations of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed. COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.	Numerical Methods : Rayleigh's, Rayleigh-Ritz Method and Holzer's	stodola's, Matrix methods.	iteration,	1	0
Application of concepts: Free vibration of strings – longitudinal oscillations of bars - transverse vibrations of beams - Torsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed. 10 COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.	Unit-5				
oscillations of bars - transverse vibrations of beams - forsional vibrations of shafts. Critical speeds without and with damping, secondary critical speed. 10 COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping.	Application of concepts: Free vibra	ation of strings – lor	ngitudinal		
 COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping. 	oscillations of phofts - transverse vib	orations of beams -	lorsional	1	0
 COURSE OUTCOMES: The students will be able to 1. Analyze the various 1-D periodic responses of a vibrating system with and without damping. 	secondary critical speed	s without and with	damping,		
 Analyze the various 1-D periodic responses of a vibrating system with and without damping. 	COURSE OUTCOMES. The studen	ts will be able to			
without damping.	1. Analyze the various 1-D periodic	c responses of a vib	rating syst	em with	and
	without damping.	1	3-9-4		

- 2. Able to derive equations of motion and solutions for two and multi degree freedom systems by the application of analytical methods.
- 3. Able to understand the numerical methods for quick estimation of 1st natural frequency of multi degree freedom systems.
- 4. Apply the knowledge of the various physical vibration measuring instruments and their applications in real life vibration data acquisition.
- 5. Distinguish the types of vibrations occurring in machine parts and judge their effects.

Question paper pattern

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 14 marks each.
- 3. Each full question will have a sub question covering all topics under a course outcome

Text Books

1.L. Meirovitch, Fundamental of Vibrations, Mc-Graw Hill Inc., 2001

2. Grover G. K., Mechanical Vibrations, Nem Chand and Bros (2009)

Reference Books

1. W. T. Thomson, M. D. Dahleh and C.Padmanabhan, Theory of Vibration with Applications, Pearson Education India: NewDelh, 5th Edition, 2008

2. S. S. Rao, 2003, Mechanical Vibrations, Pearson India: New DelhithEdition, 2018

3. Rao V. Dukkipati and J. Srinivas, Textbook of Mechanical Vibrations, Prentice-Hall of India Pvt.Ltd, 4th Edition, 2004.

Web Sources:

1.https://nptel.ac.in/courses/112/107/112107212/ 2.https://nptel.ac.in/courses/112/107/112107087/

	······································													
CO/PO	РО 1	PO 2	РО 3	РО 4	РО 5	РО 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	3	3											3	
2	3	3											3	
3	3	3											3	
4	3	3											3	
5	3	2											2	
Course	3	2											3	

INSTRUMENTAT	ION AND MECHA	TRONICS										
INSTRUMENTATION AND MECHATRONICS SEMESTER - VI Subject Code 21MEMEP604C Internal Marks												
Subject Code	21MEMEP604C	Internal Marks	30									
Number of Lecture Hours/Week	3(L)	External Marks	70									
Total Number of Lecture Hours	50	Exam Hours	03									
	Credits – 03		00									
Course Objectives:												
Enable the students to												
 To provide basic knowledge of measuring from the instrum displacement measuring instrue To learn about various tempera To describe various instrument acceleration & vibrations. To Identify and calculate method and various instruments to meta To categorize the importance of 	measurement tec nents. and provi aments. ature and pressur- nts used to meas ods of stress and s easure humidity, for f control systems i	chniques, different of ide basic knowled e measuring instrum ure level, flow, spec trains in measurem orce, torque and pov in instruments	errors ge of nents. ed, ents wer.									
Unit -1			Hours									
Definition-Basic principles of mea	asurement – mea	surement systems,										
generalized configuration and fu instruments – examples. Dynar sources of error, classification and Measurement of Displacement: transducers to measure displa capacitance, resistance, ionization calibration procedures.	nctional Descript mic performance elimination of err Theory and cons cement – piezoe on and photoele	ions of measuring characteristics – ror. truction of various electric, inductive, ectric transducers,	12									
Unit -2			1									
Measurement of Temperature: principles of measurement – thermistor – thermocouple – pyron Measurement of Pressure: Units used. Manometers, piston, bo diaphragm gauges. low pressure r gauges, Ionization pressure gauges	Classification – expansion, electron neters – temperatu – classification – urdon pressure measurement – th s, Mcleod pressure	ranges – various rical resistance – ure indicators. different principles gauges, bellows- termal conductivity e gauge.	10									
Unit – 3												
Measurement of Level: Direct me ultrasonic, magnetic, cryogenic f indicators. Flow Measurement: Rotameter, meter, hot – wire anemometer, lase Measurement of Speed: Me tachometers – stroboscope, non-co	ethod – indirect m uel level indicato magnetic, ultras er Doppler anemo echanical tacho ontact type of tach	ethods- capacitive, ors – bubbler level onic, turbine flow meter (LDA). meters- electrical ometer	10									

Measurement of Acceleration and Vibration:	
Different simple instruments - principles of seismic instruments -	-
Vibrometer and accelerometer using this principle.	
Unit – 4	- 1
Stress Strain Measurements: Various types of stress and strain	L
measurements – electrical strain gauge – gauge factor – method of usage	1 /
of resistance strain gauge for bending compressive and tensile strains -	-
usage for measuring torque, strain gauge rosettes.	10
Measurement of Force, Torque and Power- Elastic force meters, load	
cells, torsion meters, Dynamometers.	
Unit – 5	
Control Systems: Introduction, importance – classification – open and	L
closed systems, Servo mechanisms-examples with block diagrams	
Introduction to Mechatronics: Mechatronics systems – elements &	;
levels of mechatronics system, advantages and disadvantages o	
mechatronics systems Mechatronics design process, microprocessor	. 0
based controllers, programmable logic controllers, PLCs versus	
computers, application of PLCs for control	
Course outcomes:	
On completion of this course, students should be able to:	
1. Interpret the methods of measurement techniques, errors of the ins	truments
and explain the working of various displacement measuring instru	nents.
2. Select the temperature and pressure measuring instruments base	l on their
applications	
3. Choose a suitable instrument required to measure the variables	like level.
flow, speed and vibration	
4. Identify the various types of stress strain measuring gauges and e	mlain the
working of various force, torque and power measuring devices	-p-0011 0110
5 Distinguish between open and closed loop control systems	
Text Books:	
1. Measurement Systems: Applications & design by D.S Kumar.	
2. Mechanical and Industrial Measurements / R.K. Jain/ Khanna Pu	olishers
3. MECHATRONICS Integrated Mechanical Electronics Sy	stems/KP
Ramachandran GK Vijava Raghavan & MS Balasundaram/WI	EV India
Edition	
Reference Books:	
1. Mechanical Measurements / BeckWith, Marangoni, Linehard, PHL	PE.
2 Measurement systems: Application and design Doeblin Fa	
1 2. MCasulement systems, application and design, poepting that	nest. O

3. Gregory K. McMillan, Process/Industrial Instruments and Controls

Handbook, Fifth Edition, Mcgraw-Hill: New Yark, 1999

4. Mechatronics – N. Shanmugam / Anuradha Agencies Publishers.

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 14 marks each.
- 3. Each full question will have a sub question covering all topics under a course outcome.

	PO	PSO	PSO											
CO/PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	3	2			2						2	3	
2	2	3	2			2						2	3	
3	2	3	2			2						2	3	
4	2	3	2			2						2	3	
5	2	3	2		1	2						2	3	
Course	2	3	2		1	2						2	3	

UNCONVENTIONAL	MACHINING PRO	CESSES	
Subject Code	DIMEMEDGOAD	Intornal Marles	20
Number of Lecture Hours/Week	21 MEMEF004D 2(I)	Futernal Marks	70
Total Number of Lecture Hours/ Week	50 50	External Marks	02
Total Nulliber of Lecture Hours	odita 02	Exam nours	03
Course Objectives	euits – 05		
The general objectives of the course	ore to enable the s	students to	
1 To compare conventional and uno	are to enable the s	ining processes on	d also
describe the USM method		ning processes an	u aiso
2 To State the mechanism of materi	al removal in varia	un electro chemico	1
2. To State the mechanism of materi			11
3 To identify the mechanism of mat	erial removal in va	rious thermal met	-1
removal processes		inous unermai meta	ai
4 To acquire thorough knowledge of	Electron Ream M	achining Laser Re	am
Machining Plasma Arc Machining	and comparison o	f thermal and non.	
thermal processes	and comparison o	i incrinar and non	
5 To inculcate the concepts of A.IM	W.IM AW.IM and	various finishing	
processes		various miisimig	
Unit -1			Hours
INTRODUCTION: Need for non-	traditional mach	nining methods-	110410
classification of modern machining n	rocesses – conside	rations in process	
selection, applications,		rations in process	10
Ultrasonic machining: Elements of	the process, mech	anics of material	
removal. MRR process parame	eters. economic	considerations.	
applications and limitations.		com51401400115,	
Unit -2			
ELECTRO – CHEMICAL MACH	INING: Fundame	ntals of electro	
chemical machining, electrochemica	l grinding, electro	chemical honing	
and deburring process, metal remova	al rate in ECM, To	ol design, Surface	10
finish and accuracy, economic aspe	ects of ECM – Sin	nple problems for	
estimation of metal removal rate, fur	ndamentals of cher	nical, machining,	
advantages and applications.		, U,	
Unit – 3			
THERMAL METAL REMOVAL PR	OCESSES: Gener	al principle and	
applications of Electric Discharg	e Machining, El	ectric Discharge	
Grinding and wire EDM – Power cir	cuits for EDM, Me	echanics of metal	10
removal in EDM, Process paramete	ers, selection of to	ool electrode and	
dielectric fluids, surface finish and r	nachining accurac	cy, characteristics	
of spark eroded surface	_		
Unit – 4			
Electron Beam Machining, Laser	Beam Machining	- Basic principle	
and theory, mechanics of mater	ial removal, proc	cess parameters,	10
efficiency & accuracy, applications			10
Plasma Machining: Application of pl	lasma for machini	ng, metal removal	

mechanism, process parameters, accuracy and surface finish and other	
applications of plasma in manufacturing industries.	
Unit – 5	
Abrasive jet machining, Water jet machining and abrasive water jet	
machining: Basic principles, equipments, process variables, mechanics	
of material removal, MRR, application and limitations, magnetic abrasive	10
finishing, abrasive flow finishing, Electrostream drilling, shaped tube	
electrolytic machining.	
Course outcomes:	
At the end of the course, the student will be able to:	
1. Describe the need and importance of unconventional machining pro	ocesses
and also explain the material removal rate using USM method	
2. Select the different elements of Chemical and Electrochemical mae	chining
processes and its applications.	
3. Illustrate different parameters of Electric Discharge Machining process	ses and
its applications.	
4. Demonstrate the material removal process using Laser Beam Mac	hining,
Plasma Arc Machining and Electron Beam Machining.	
5. To Recommend the concepts of AJM, WJM, AWJM and various fit	nishing
processes	
Text Books:	
1. Advanced machining process/ VK Jain/ Allied publishers.	
2. Modern Machining Processes/ Pandey P.C and Shan H.S. / THM	
Reference Books:	
1. New Technology / Bhattacharya A/ The Institution of Engineers, Indi	a 1984.
2. Manufacturing technology-II / P.N. Rao / Mc Graw Hill publications	
Question paper pattern:	
1. Question paper contains 10 Questions, 2 from each course outcom	ie. The
student must answer 5 full questions by selecting one question from	m each
course outcome (Internal Choice)	
2. CO1- CO5 questions carries 14 marks each.	

3. Each full question will have a sub question covering all topics under a course outcome.

	DO			DO		DO	DO I		- <u>8</u> .	PO	PO	PO	DGO	DSO
CO/PO	P0 1	PO 2	РО 3	4	РО 5	F0 6	РО 7	PO 8	9 9	PO 10	PO 11	PO 12	1	PSU 2
1	2					2						1	1	
2	2					2						1	2	
3	2					2						1	2	
4	2					2						1	1	
5	2					2						1	1	
Course	3					2						2	2	

ENERGY I	MANAGEMENT									
SEME	ESTER - VI									
Subject Code	21MEMEP604E	Internal Marks	30							
Number of Lecture Hours/Week	3(L)	External Marks	70							
Total Number of Lecture Hours	50	Exam Hours	03							
Cre	dits – 03									
Course Objectives										
The general objectives of the course are to enable the students to										
1. Demonstrate the importance and role of energy management in the										
functional areas like Manufacturin	ng Industry, Proce	ss Industry, Comr	nerce							
and Govemment.										
2. To know the different energy resou	urces									
3. Understand thermodynamic power	r cycles and the a	ssociated processe	es and							
fuels.										
4. Understand the economics of ener	gy conversion									
5. Enable the students to understand	d the basic energy	conversion and								
management principles and to ide	ntify sources of er	nergy loss and targ	get							
savings										
6. Enable students in carrying out b	udgeting and risk	analysis								
Unit -1			Hours							
INTRODUCTION: Principles of e	energy managen	ient Managerial								
organization, Functional areas for 1) r	nanufacturing inc	lustry, 11) Process	10							
industry, iii) Commerce, iv) Governme	ent, Role of Energy	manager in each	_							
of these organizations. Initiating, (Organizing and i	nanaging energy								
management programs										
Unit -2		1. 5. 1								
ENERGY AUDIT: Definition and conc	cepts. Types of ene	ergy audits, Basic								
energy concepts, Resources for plan	it energy studies.	Data gathering,								
Analytical techniques. Energy Cons	ervation: Techno	logies for energy	10							
conservation, Design for conservation	n of energy mater	ials, Energy flow								
networks. Critical assessment of ener	gy usage. Formula	ation of objectives								
and constrains, Synthesis of alternat	tive options and t	echnical analysis								
of options. Process integration.										
$\frac{1}{1}$	· · · ·	· · · ·								
ECONOMIC ANALYSIS: Scope, Ch	naracterization of	an investment	10							
project. Types of depreciation,	lime value of	money. Budget								
considerations, Risk analysis.										
Unit – 4		1 4 1' 1								
METHODS OF EVALUATION OF	PROJECTS: Payt	back, Annualized								
costs, Investor's rate of return, Pres	ent worth, Intern	al rate of return.	10							
Pros and cons of the common method	of analysis. Repla	acement analysis.								
Unit – 5										
ALTERNATIVE ENERGY SOURCES:	SOLAR ENERGY	: Types of devices	10							
tor solar energy collections, Thermal	storage system,	Control systems.								

Wind Energy. Availability, Wind Devices. Wind Characteristics,
performance of turbines and systems.
Course outcomes:
At the end of the course, the student will be able to:
1. Explain the fundamentals of energy management and its influence on
environment
2. Describe methods of energy production for improved utilization.
3. Apply the principles of thermal engineering and energy management to
improve the performance of thermal systems.
4. Analyze the methods of energy conservation and energy efficiency for
buildings, airconditioning, heat recovery and thermal energy storage systems.
5. Assess energy projects on the basis of economic and financial criteria.
Text Books:
1. Energy Management by Murfy
2. General Aspects of Energy Management and Audit, National Productivity
Council of India, Chennai (Course Material- National Certification
Examination for Energy Management)
Reference Books:
1. New Technology / Bhattacharya A/ The Institution of Engineers, India 1984
2. Manufacturing technology-II / P.N. Rao / Mc Graw Hill publications
3. Energy Management Handbook, W.C. Turner, 5th Edition, Marcel Dekker,
Inc, New York, 2005.
4. Guide to Energy Management, B. L. Capehart, W. C. Turner, W. J. Kennedy,
CRC Press, New York, 2005.
5. Energy Management by O.P. Collagan
Question paper pattern:
1. Question paper contains 10 Questions, 2 from each course outcome. The
student must answer 5 full questions by selecting one question from each
course outcome (Internal Choice)
2. CO1- CO5 questions carries 14 marks each.
3. Each full question will have a sub question covering all topics under a course

3.	Each full question	will have a sub	question cov	vering all topic	s under a course
	outcome.				

CO/PO	PO	PSO	PSO											
00/10	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1				1		3	2	3		2	1	2	3	
2				1		3	2	3		2	1	2	2	
3				1		3	2	3		2	1	2	3	
4				1		3	2	3		2	1	2	3	
5				1		3	2	3		2	1	2	3	
Course				1		3	2	3		2	1	2	3	

CAD	CAM LAB		
SEME	ESTER - VI		
Subject Code	21MEMEL6060	IA Marks	15
Number of Lecture Hours/Week	03(P)	Exam Marks	30
Total Number of Lecture Hours	48	Exam Hours	03
Cre	dits _1 5		

Course objectives: Students should be able to

- 1. Understand modeling tools for drawing machine components
- 2. Gain the knowledge of 3D drawing of machine components
- 3. Gain the knowledge of Assembly drawing of machine components
- 4. Study the NC and CNC codes
- 5. Prepare simple parts on the CNC Machining center.

Introduction

Introduction to various modeling and simulation packages, their importance and applications in industries.

1. DRAFTING:

Development of part drawings for various components in the form of orthographic and isometric. representation of dimensioning and tolerances scanning and plotting. study of script, DXE and IGES files.

2. PART MODELING

- 1. 3D Solid part modeling of mechanical components
- 2. 3D Part modeling of mechanical components using revolve option
- 3. 3D Part modeling of mechanical components using hollow
- 4. 3D Part modeling of mechanical components using sweep
- 5. 3D Part modeling of mechanical components using swept boss
- 6. 3D Part modeling of mechanical components using boundary boss
- 7. 3D Part modeling of mechanical components using rib, pattern, draft

3. ASSEMBLY MODELING

- 8. Assembly of screw jack using Bottom-up approach
- 9. Assembly of any one cotter joint using Bottom-up approach

4. CNC MACHINING

- 10. Study of NC and CNC codes used in CNC machining.
- 11. NC Programming Practice for machining various components related to turning
- 12. NC Programming Practice for machining various components related to milling
- 13. Automated CNC Tool path & G-Code generation using Pro-E/Master CAM

Course outcomes: Upon Completion of this course, the students will be able to:

- 1. Identify the various sketch and part design tools in modeling software
- 2. Draw machine components by modeling software
- 3. Apply the knowledge of part drawing
- 4. Apply the knowledge of assembly drawing
- 5. Prepare part programme for engineering components on CNC Machining center

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	3	3	2	2								2		3
2	3	3	2	2								2		3
3	3	3	2	2								2		3
4	3	3	2	2								2		3
5	3	3	2	2								2		3
Course	3	3	2	2								2		3

HEAT	TRANSFER LAB									
Subject Code	MESIER - VI	Internal Marles	15							
Subject Code	21WEWEL0070	Enternal Marks	15							
Number of Lecture Hours/week	3(P)	External Marks	35							
Iotal Number of Lecture Hours	40 Anadita 15	Exam Hours	03							
Credits – 1.5										
1 Illustrate basic best transfer pr	incipies and test the	thormal conductivi	trafa							
1. Inustrate basic near transfer pri	incipies and test the	thermal conductivi	lty of a							
Difference in the second secon	a officiant in case of	composito wall on	dhaat							
exchanger.	coefficient in case of	composite wan and	u neat							
3. Analyze the efficiency and temp	erature distribution	of a pinfin.								
4. Compare the emissivity of black	and grey body.									
5. Estimate heat transfer coefficient	nt in case of externa	l flows.								
6. Interpret the data for Convection	n and Radiation.									
LIST OF EXPERIMENTS										
1. Determination of overall heat the	ransfer co-efficient c	f a composite slab								
2. Determination of heat transfer	rate through a lagge	ed pipe.								
3. Determination of heat transfer	rate through a conc	entric sphere.								
4. Determination of thermal cond	uctivity of a metal re	od.								
5. Determination of efficiency of a	pin-fin.		_							
6. Determination of heat transfe convection.	r coefficient in forc	ed convection & n	latural							
7. Determination of COP of VCR s	ystem.									
8. Determination of effectiveness	of parallel and coun	ter flow heat exchar	ngers.							
9. Determination of emissivity of a	a given surface.									
10. Determination of Stefan Boltzm	ian constant.									
11. Determination of critical heat f	lux.									
12. Determination of heat transfer	rate in drop and film	n wise condensation	1.							
ADDITIONAL EXPERIMENTS										
1. Determination of heat transfer	rate in radiator usin	g radiator test rig.								
2. Determination of heat transfer	r rate in twisted ta	pe inserted co-axia	l heat							
exchanger.										
3. Demonstration of heat pipe.										
Course outcomes:										
On completion of this course, stud	ents should be able	to:								
1. Determine thermal conductivity	y of different commo	n metallic materials	8							
2. Determine the quantity of heat	transfer between flu	uids and solid boun	daries							
3. Analyze different heat exchange	ers and Evaluate the	e amount of heat								
exchanged between fluids flowi	ng within heat exch	angers								
4. Explain simple experimental w	ork in radiative heat	transfer								
5. Determine the Stefan Boltzmar	n constant & Critical	heat flux								

CO/PO	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	3	2	2	3									3	
2	3	2	2	3									3	
3	3	3	2	3									3	
4	3	3	3	3									3	
5	3	2	2	3									3	
Course	3	2	3	3									3	

ON & MECHATRON	NICS LAB									
SEMESTER - VI										
21MEMEL6080	Internal Marks	15								
3(P)	External Marks	35								
45	Exam Hours	03								
Credits – 1.5										
	ON &MECHATRON MESTER - VI 21MEMEL6080 3(P) 45 redits - 1.5	ON &MECHATRONICS LABMESTER - VI21MEMEL6080Internal Marks3(P)External Marks45Exam Hoursredits - 1.5								

Course objectives: The students should be able to:

- 1. Understand the experimental work in the laboratory and calibration of various instruments for measuring temperature, displacement
- 2. Measure low and medium pressures using Mechanical and Electrical sensors.
- 3. Measure flow, speed and vibration using analogue and digital sensors.
- 4. Characterize the load and displacement using transducer kit
- 5. Develop PLC programs for control of traffic lights, water level and lifts.

LIST OF EXPERIMENTS

1. Instrumentation & Measurement

- 1. Displacement measurement by using capacitive trainer
- 2. Temperature measurement by using thermocouples
- 3. Pressure measurement by using bourdon tube pressure gauge.
- 4. Pressure measurement by using Mcleod gauge.
- 5. Flow measurement by using Rotameter.
- 6. Speed measurement by using Digital tachometer.
- 7. Vibration measurement by using seismic pickup.

2. DYNA 1750 Transducers Kit

- 8. Displacement measurement by using LVDT.
- 9. Load measurement by using strain gauge load cell.
- 10. Temperature measurement by using thermistors/RTD

3. PLC PROGRAMMING

- 11. Logic Gates Using Ladder Logic Programme
- 12. Traffic Light controller Using Ladder Logic Programme
- 13. Water level controller Using Ladder Logic Programme
- 14. Lift controller Using Ladder Logic Programme

COURSE OUTCOMES:

After completion of the course student will be able to:

- 1. Know requirement of calibration, errors in measurement of displacement and temperature.
- 2. Select proper measuring instrument for measuring low and medium pressures.
- 3. Select proper measuring instrument for measuring flow, speed and Vibration measurement.
- 4. Measure load, displacement and temperature using analogue and digital sensors.
- 5. Develop the PLC programs for Lift, water level control and traffic light

CO / DO	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	3	2			2						2	3	
2	2	3	2			2						2	3	
3	2	3	2			2						2	3	
4	2	3	2			2						2	3	
5	2	3	2		1	2						2	3	
Course	2	3	2		1	2						2	3	

BIOLOGY F	OR ENGINEERS			
Subject Code	2010K - VI	Internal Mari-		30
Number of Lecture Hours/Week	21CIVIDIN0100 2(L)	External Mark	.3 79	70
Total Number of Lecture Hours	<u> </u>	Exem Hours	79	03
Cre	edits – 0	LAIII IIUIIS		00
Course Objectives:				
Enable the students to				
1. Convey that Biology is as importa	nt as scientific disc	cipline as Mathe	ema	tics,
Physics and Chemistry.		1		,
2. Convey that "Genetics is to biol	ogy what Newton's	s laws are to l	Phys	sical
Sciences .	wayld not have arris	tod on conth		
4. Molecular basis of ording and door	would not nave exis	ted on earth.	201	
4. Molecular basis of coulling and deco	reductionist level		sal.	
5. Analyze biological processes at the	reductionist level.			
Unit -1			Ho	ours
Introduction: Bring out the fundam	ental differences be	tween science		
and engineering by drawing a comp	arison between eye	e and camera,		
Bird flying and aircraft. Mention the	most exciting aspec	t of biology as	1	0
an independent scientific discipline. V	Why we need to stud	y biology. How	-	
biological observations of the 18th C	entury lead to maj	or discoveries.		
Examples from Brownian motion and	the origin of therm	odynamics by		
referring to the original observation of	Robert Brown and	Julius Mayor.		
Unit -2		-1		
classification: Hierarchy of file to	Unicellular or m	ulticellulor (b)		
ultro structure prokoryotes or euo	- Unicentular of In	unicential (D)		
utilization -Autotrophs beterotrop	aryones. (c) energy	(d) Ammonia	1	0
excretion – aminotelic uricoteliec u	reotelic (e) Habitat	a- acquatic or		.0
terrestrial (e) Molecular taxonomy- th	ree major kingdom	s of life Model		
organisms for the study of biology co	ome from different	groups. E.coli.		
S.cerevisiae, D. Melanogaster, C. eleg	ance, A. Thaliana, M	M. Musculus.		
Unit – 3	,,			
Genetics &Biomolecules: Mendel's 1	aws, Concept of seg	gregation and		
independent assortment. Concept of	of allele. Gene ma	pping, Gene		
interaction, Epistasis. Meiosis and	Mitosis be taught	as a part of		
genetics. Emphasis to be give not to t	he mechanics of cel	l division nor		
the phases but how genetic material	passes		1	0
from parent to offspring. Concepts o	f recessiveness and	l dominance.		
Concept of mapping of phenotype to	genes. Discuss abo	out the single		
gene disorders in humans. Discuss	the concept of com	plementation		
using human genetics.	1 1 •	. D.		
Molecules of life: Monomeric units a	na polymeric struc	tures. Discuss		
about sugars, starch and cellulos	se. Amino acids a	and proteins.		

Nucleotides and DNA/RNA. Two carbon units and lipids					
Unit – 4					
Enzymes & Proteins: Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme catalyze reactions - Enzyme classification. Mechanism of enzyme actionexamples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis. Proteins: structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Information Transfer: The molecular basis of coding and decoding genetic information is universal Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosides. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.	10				
Unit – 5	1				
Microbiology & Metabolism: Thermodynamics as applied to biological systems - Exothermic and endothermic versus undergone and exergoinc reactions. Concept of Keq and its relation to standard free energy - Spontaneity - ATP as an energy currency. This should include the breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge. Concept of single celled organisms: Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics	10				
Course outcomes:					
 On completion of this course, students should be able to: 1. understanding how biological observations of the 18th Century that lead to major discoveries 2. Convey that classification per say is not what biology is all about but highlight the underlying criteria, such as morphological, biochemical and ecological 3. Highlight the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring. 					
4. Convey that all forms of life have the same building blocks and manifestations are as diverse as one can imagine.	yet the				
5. Convey that "Genetics is to biology what Newton's laws are to Sciences".	Physical				
 Text Books: 1. Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education 	Cain, M, lucation				

Ltd.Mechanical and Industrial Measurements / R.K. Jain/ Khanna Publishers

2. Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H., John Wiley and Sons.

Reference Books:

- 1. Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox, M. M.W.H.Freeman and Company
- 2. Molecular Genetics (Second edition), Stent, G. S.; and Calender, R.W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher..
- 3. Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm,C.Brown Publishers Mechatronics N. Shanmugam / Anuradha Agencies Publishers.

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 14 marks each.
- 3. Each full question will have a sub question covering all topics under a course outcome.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	2		2		2	2	2					2		
2	2		2		2	2	2					2		
3	2		2		2	2	2					2		
4	2		2		2	2	2					2		
5	2		2		2	2	2					2		
Course	2		2		2	2	2					2		

COURSE STRUCTUREAND SYLLABUS SITE-21 REGULATIONS

For III B.Tech. VII Semester Mechanical Engineering

1 4 1	TV B. Teen. Th Semester Course Structure for the Regulation SITE 21								
S.No.	CC	Course Code Course Title		L	Т	Р	Cr		
1	PEC	21MEMEP701X	Professional Elective-III		0	0	3		
2	PEC	21MEMEP702X	Professional Elective-IV	3	0	0	3		
3	PEC	21MEMEP703X	Professional Elective-V	3	0	0	3		
4	OEC	21MEXXO704X	Open Elective Course-III		0	0	3		
5	OEC	21MEXXO705X	Open Elective Course-IV	3	0	0	3		
6	HSC	21MEMET7060	Operation Research	3	0	0	3		
7	SOC	21MEMES7070	Modelling and Analysis (FEA)	1	0	2	2		
			Research Internship - 2 Months						
8	I/RI	21MEMER7080	(Mandatory) after Third year (to	0	0	6	3		
			be evaluated during VII semester						
	Total Credits						23		
			Honors/Minor courses (The	4	0	0	4		
9	H/M		hours distribution can be 3-0-2						
			or 3-1-0 also)						

IV B. Tech. VII Semester Course Structure for the Regulation SITE 21

Professional Elective Course -III

S.No.	CC	Course Code	Course Title	L	T	Ρ	Cr	
1		21MEMEP701A	Prime Movers for Automobiles	3	0	0	3	
2		21MEMEP701B	Mechanics of Composites	3	0	0	3	
3		21MEMEP701C	Non – Destructive Evaluation	3	0	0	3	
4	PEC	21MEMEP701D	Micro Electro Mechanical	3	0	0	3	
			Systems					
		21MEMEP701E	Product Design and	3	0	0	3	
			Development					
NPTEL	NPTEL/SWAYAM/MOOCs (Course of 12 Weeks duration) to be offered							

Professional Elective Course -IV

S. No.	сс	Course Code	Course Title	L	Т	Ρ	Cr
1		21MEMEP702A	Refrigeration & Air Conditioning	3	0	0	3
2	DEC	21MEMEP702B	Synthesis and Characterization of Materials	3	0	0	3
3	FEC	21MEMEP702C	Smart Manufacturing and IIOT	3	0	0	3
4		21MEMEP702D	Tribology	3	0	0	3
5		21MEMEP702E	Hydrogen & Fuel Cells	3	0	0	3
NPTEL/SWAYAM/MOOCs (Course of 12 Weeks duration) to be offered							

S. No.	CC	Course Code	Course Title	L	Т	Ρ	Cr	
1		21MEMEP703A	Solar Energy Engineering and Applications	3	0	0	3	
2	DEC	21MEMEP703B	Additive Manufacturing	3	0	0	3	
3	PEC	21MEMEP703C	Production Planning and Control	3	0	0	3	
4		21MEMEP703D	Machine Tool Design	3	0	0	3	
5		21MEMEP703E	Computational Fluid Dynamics	3	0	0	3	
NPTE	NPTEL/SWAYAM/MOOCs (Course of 12 Weeks duration) to be offered							

Professional Elective Course -V

PRIME MOVERS FOR AUTOMOBILES									
SEI	MESTER - VII								
Subject Code	21MEMEP701A	Internal Marks	30						
Number of Lecture Hours/Week	3(L)	External Marks	70						
Total Number of Lecture Hours	50	Exam Hours	03						
C	redits – 03								
Course Objectives:									
Enable the students to	Enable the students to								
1. To make the student learn and u	understand the re	asons and effects o	f various						
losses that occur in the actual e	ngine operation.								
2. To familiarize the student with	the various engin	ne systems along w	vith their						
function and necessity.									
3. To learn about normal combusti	on phenomenon a	and knocking in S.I.	and C.I.						
Engines and to find the several	engine operating	g parameters that a	affect the						
smooth engine operation.									
4. To make the student learn to p	erform testing on	S.I and C.I Engine	s for the						
calculations of performance									
5. To learn about engine emission	control, alternate	fuels and electric v	ehicles.						
Unit -1			Hours						
Actual Cycles and their Analysi	is: Introduction,	Comparison of Air							
Standard and Actual Cycles, Tin	ne Loss Factor,	Heat Loss Factor,	10						
Exhaust Blow down-Loss due to Gas exchange process, Volumetric									
Efficiency. Loss due to Rubbing Fr	iction, Actual and	l Fuel-Air Cycles of							
CI Engines.									
Unit -2			1						
I C ENGINES: Classification - Work	ing principles, Va	lve and Port Timing							
Diagrams, - Engine systems – Fuel	, Carburetor, Fue	el Injection System,	10						
Ignition, Cooling and Lubrication, p	orinciple of wankle	e engine, principles	10						
of supercharging and turbo charging	ng.								
Unit – 3									
Combustion in S.I. Engines: N	lormal Combusti	on and abnormal							
combustion – Importance of flame s	speed and effect o	f engine variables –							
Types of Abnormal combustion, pro	e-ignition and kno	ocking (explanation							
of) – Fuel requirements and fu	iel rating, anti-l	knock additives –							
combustion chamber – requirements, types.									
Combustion in C.I. Engines: Four stages of combustion – Delay period									
and its importance – Effect of engin	ie variables – Dies	sel Knock– Need for							
air movement, suction, compre	ession and cor	nbustion induced							
turbulence – open and divided com	bustion chamber	s and nozzles used							
– fuel requirements and fuel rating									
Unit – 4									
Measurement, Testing and Perfo	rmance: Paramet	ers of performance	10						
- measurement of cylinder pressure, fuel consumption, air intake, exhaust gas composition, Brake power – Determination of frictional losses and indicated power – Performance test – Heat balance sheet and chart									
--	---								
Unit – 5									
 Engine Emissions: SI and CI engine emissions. Harmful effects. Emissions measurement methods. Methods for controlling emissions. EURO and BHARAT emission norms. Alternate Fuels for IC Engines: Need for use of alternate fuels. Use of alcohol fuels. Biodiesel. Biogas and Hydrogen in engine Batteries: Battery: Battery parameters; Types of batteries- Technical characteristics-Ragone plots. Electric Vehicles: Introduction: History of EVs, EV system, basic structure- Electric vehicle drive train-advantages and limitations. 	10								
 Course outcomes: On completion of this course, students should be able to: 1. Illustrate and analyze the Air Standard Cycles, Fuel Air Cycles and Cycles 2. Explain various internal combustion engines and analyze its un thermodynamic cycles and to gain knowledge in engine systems 3. Illustrate various combustion processes and design of combustion ch in S.I. & C.I. engines. 4. Examine the performance testing of IC engines and to evaluate performance parameters. 5. Outline emission formation mechanism of IC engines, its effects a legislation standards and understand the latest developments in IC H alternate fuels Electric Vehicles. 	l Actual derlying nambers various and the Engines,								
Text Books:									
1. I.C. Engines / V. Ganesan- TMH									
2. Heat engines, Vasandani& Kumar publications Thermal									
 Reference Books: 1. Thermal Engineering / RK Rajput/ Lakshmi Publications 2. IC Engines – M.L.Mathur & R.P.Sharma – Dhanpath Rai & Sons. 3. I.C. Engines – Applied Thermo sciences–C.R. Ferguson & A.T. Kirk pate Edition-Wiley Publ 	rick-2 nd								
Question paper pattern:									
 Question paper contains 10 Questions, 2 from each course outcon student must answer 5 full questions by selecting one question fro course outcome (Internal Choice) CO1- CO5 questions carries 14 marks each. 	me. The om each								
3. Each full question will have a sub question covering all topics under a	a course								

outcome.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	2	3											3	
2	2	3											3	
3	2	3											3	
4	2	3	3										3	
5	2	3					3					3	3	
Course	2	3	1				1					1	3	

MECHANICS OF COMPOSITES									
SE	MESTER - VII								
Subject Code	21MEMEP701B	Internal Marks	30						
Number of Lecture Hours/Week	3(L)	External Marks	70						
Total Number of Lecture Hours	50	Exam Hours	03						
(Credits – 03								
 Course Objectives: Enable the students to Understand the mechanics of composite materials. Study the Elastic behavior of composite lamina Study the aspects of the Micromechanical Analysis of a Lamina Develop the Micromechanical Analysis of a Lamina Study the Failure, Analysis, and Design of Laminates 									
Unit -1		antic Articitions	nours						
Introduction to composite materials, Geometric definitions, Classification of composites, Types of fibers, Types of the matrix, Hybrid composite, scale of analysis- micro and macro mechanics approaches, Degree of Anisotropy. Manufacturing methods of the composites, Autoclaus moulding Filement winding Pasin transfer moulding									
Unit -2	0,	0							
Unit -2 Elastic behaviour of composite lamina (Micro mechanics), Micro mechanics methods, Geometric aspects and elastic symmetry, Longitudinal elastic properties (Continuous fibers), Transverse elastic properties, In-plane shear properties (Continuous fibers), Longitudinal properties (abort fibers)									
Unit – 3			1						
Elastic behaviour of composite la stress strain relations: Genera orthotropic material, transverse material under plane stress, isotro	amina (Macro me al anisotropic ly isotropic ma pic material.	echanics approach), material, Specially aterial, Orthotropic	10						
Unit – 4			I						
Standard sizes of the specimen f tests, impact test of unidirectional materials: fibre failures, matrix fail Tsai-Wu, Tsai-hill, Puck criterion,	for tensile and co composites. Failu ure, interface failu <u>Maximum stress</u> ,	ompressive, Fatigue are of the composite are. Failure Theories maximum strain.	10						
Unit – 5			ſ						
Failure, Analysis, and Design of La of Laminates, Failure Criterion for Composite, static analysis of lamin	aminates: Introdu r a Laminate, Des nated plates.	ction, Special Cases sign of a Laminated	8						
Course outcomes:									
On completion of this course, stud 1. Understand the composite mat 2. Study the behaviour of compos 3. Study the properties of various	ents should be al terials and manuf site Lamina s types of composi	ole to: Tacturing methods ite materials							

4. Apply Failure theories to calculate stresses in composite materials
5. Study the Failure, Analysis, and Design of Laminates
Text Books:
1. Engineering Mechanics of Composite Materials by Isaac and M Daniel, Oxford
University Press, 1994.
2. B. D. Agarwal and L. J. Broutman, Analysis and performance of fibre
Composites, Wiley- Interscience, New York, 1980.
3. Mechanics of Composite Materials, Second Edition (Mechanical Engineering),
By Autar K. Kaw, Publisher: CRC.
Reference Books:
1. R. M. Jones, Mechanics of Composite Materials, McGraw Hill Company, New
York, 1975
2. Mechanics of Composite Materials Recent Advances by ZviHashin, Carl
T.Herakovich
3. L. R. Calcote, Analysis of Laminated Composite Structures, Van Nostrand
Rainfold, New York, 1969.
4. Principles of composite material mechanics by Ronald F.Gibson
Question paper pattern:
1. Question paper contains 10 Questions, 2 from each course outcome. The
student must answer 5 full questions by selecting one question from each
course outcome (Internal Choice)
2. CO1- CO5 questions carries 14 marks each.
3. Each full question will have a sub question covering all topics under a course
outcome.

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2	3									2	3	
2	2	2	3									2	3	
3	2	2	3									2	3	
4	2	2	3									2	3	
5	2	2	3									2	3	
Course	2	2	3									2	3	

NON - DESTRI	ICTIVE EVALUAT	ION	
SEM	IESTER - VII		
Subject Code	21MEMEP701C	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
Cr	edits – 03	·	
Course Objectives:			
Enable the students to			
1. Know basics of NDE methods an	d Learn concepts a	& principles of Vis	ual and
Liquid penetrant testing methods			
2. Explore the concepts of Ultrasc	onic testing equip	ment, its techniqu	ies and
applications.			
3. Determine the importance of M	lagnetic particle to	esting, testing pro	cedure
Calibration techniques, evaluatio	n and Industrial a	pplications.	. 1
4. Explain the principles of radios	graphy, its technic	ques, safety aspe	cts and
industrial applications.	1	· · · · · · · · · · · · · · · · · · ·	•
5. Understand the concept of Ed	ay current test s	system, its effect	iveness
			TTours
Unit -1	leatmatize testing	Vignal tasting	nours
Introduction: Introduction to non-o	lestructive testing,	visual testing.	
Test Procedure IPT Equipment	Standardization	and Calibration	10
Interpretation and Evaluation Adv	Stanuaruization antages Effectiver	and Cambrations	
Applications of I PT	antages, Encenver	icss, Linnations,	
Init -2			
Ultrasonic Testing: Basic Princi	inles Ultrasonic	Equipment and	
Variables affecting Ultrasonic	Test. Ultrason	ic Techniques.	
Standardization and Calibration.	Interpretation and	d Guidelines for	10
Acceptance, Rejection - Advantages	s. Effectiveness ar	nd Limitations of	
Ultrasonic Testing, Applications	,		
Unit – 3			
Magnetic Particle Testing: Basi	c Principles of M	Agnetic Particle	
Testing, Magnetic Materials,	Magnetization	of Materials,	10
Demagnetization of Materials, M	agnetic Particle '	Test equipment,	10
Magnetic Particle Test Procedure,	Standardization	and Calibration,	
advantages, limitations of the Magne	etic Particle Test a	nd applications	
Unit – 4			
Radiographic Testing: Basic Princip	ples of Radiographi	ic test, Sources of	
X and Gamma Rays, Radiog	raphic equipmen	t, Radiographic	10
Techniques, Safety Aspects of Inc	lustrial Radiograp	ohy, Advantages,	10
Effectiveness, Limitations and applie	cations of Radiogra	aphic Testing	
Unit – 5			
Eddy Current Testing: Principles	s of Eddy Curren	nt testing, Eddy	. -
Current Test System, Test Procedu	ure, Applications	of Eddy Current	10
Testing, Effectiveness of Eddy Curre	ent Testing, Advant	ages, Limitations	

and	applications	of Eddy	Current Testing	
unu	applications	or Luuy	ourrent results	

Course outcomes:

On completion of this course, students should be able to:

- 1. **Explain** the working of Visual Inspection and Liquid penetrant test methods and its applications.
- 2. **Describe** the working of Ultrasonic testing, its calibration procedure, effectiveness, limitations and applications.
- 3. **Explain** the working of Magnetic particle testing procedure, the variables of the process, and measure defects of using MPT.
- 4. **Illustrate** the working of Radiographic testing equipment & its sources, safety aspects, industrial applications.
- 5. **Explain** the working of Eddy current testing equipment & procedure, advantages, limitations, industrial applications.

Text Books:

- 1. Non-destructive Test and Evaluation of Materials by J Prasad, CGK Nair, TMH Publishers.
- 2. Non-Destructive Testing by Dr. S.Ramachandran, Airwalk Publications.
- 3. Non-Destructive Testing Techniques by Ravi Prakash, New Age International Private Limited.

Reference Books:

- 1. Non-Destructive Testing of Materials by V. Jayakumar, Lakshmi Publications.
- 2. Basics of Non-Destructive Testing by Lari& Kumar, S.K.Kataria& Sons Publishers.
- 3. Ultrasonic Inspection Training for NDT: E. A. Gingel, Prometheus Press.
- 4. ASTM Standards, Vol 3.01, Metals and alloys

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 14 marks each.
- 3. Each full question will have a sub question covering all topics under a course outcome.

	PO	PSO	PSO											
CO/PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2		3							2	2	2	
2	2	2		3							2	2	2	
3	2	2		3							2	2	2	
4	3	2		3							2	2	1	
5	3	2		3							2	2	1	
Course	3	2		3							2	2	1	

MICRO ELECTRO MECHANICAL SYSTEMS								
SEM	ESTER - VII	Tataanal Maalaa	20					
Subject Code	21MEMEP701D	Internal Marks	30					
Number of Lecture Hours/week	3(L)	External Marks	70					
Total Number of Lecture Hours	50	Exam Hours	03					
Cr	edits – 03							
Course Objectives:								
Enable the students to		1 1	. ,					
1. Integrate the knowledge of semic	onductors and soli	d mechanics to fai	oricate					
MEMS devices.								
2. Understand the rudiments of Mic	cro labrication tech	niques.						
3. Identify and understand the varie	ous sensors and ac	tuators						
4. Different materials used for MEM	lo and harrowd Flastmic	al and Machanica	1					
5. Applications of MEMS to disciplin	les beyond Electric	ai and mechanica	1					
			Uouro					
Unit -1 INTRODUCTION: Definition of MEM	S MEMS histom	and dovalormont	nours					
micro mochining lithography prin	oinlog & mothoda	atmiotizmol and						
micro macmining, innography prim	cipies & methous	doning otohing						
surface miero machining wafer her	ding LICA	doping, etching,						
MECHANICAL SENSORS AND ACT	UIIIg, LIGA.	as of sensing and	10					
actuation: beam and contilever	conocitive niezo	electric strain						
pressure flow pressure measure	capacitive, piczo	nhone MFMS						
groscopes shear mode piezo a	ctuator grinning	piezo actuator						
Inchworm technology	ciuator, gripping	piczo actuator,						
Init -2								
THERMAL SENSORS AND ACTUA	TOPS. Thermal er	perov basics and						
heat transfer processes thermister	s thermo devices	thermo couple						
micro machined thermo couple prob	e neltier effect heat	numps thermal						
flow sensors micro bot plate gas se	e, perior effect field	mo vessels nyro						
electricity shape memory allows (SM	A) II-shaped horiz	ontal and vertical						
electro thermal actuator, thermally	activated MEMS re	lav micro spring						
thermal actuator, data storage canti	lever	lay, micro spring	10					
MAGNETIC SENSORS AND ACT	IIATORS: Magnet	ic materials for	10					
MEMS and properties magnetic	sensing and det	ection magneto						
resistive sensor more on hall	effect magneto (liodes magneto						
transistor, MEMS magnetic sensor	pressure sensor	utilizing MOKE						
magnetic MEMS actuators, by dir	ectional micro ac	tuator, feedback						
circuit integrated magnetic actuate	or, large force relu	ctance actuator.						
magnetic probe-based storage device	2.							
Unit – 3								
MICRO-OPTO-ELECTRO MECHA	NICAL SYSTEMS	B: Principle of						
MOEMS technology, properties of lig	t, light modulator	rs, beam splitter.	10					
micro lens, micro mirrors, digital	micro mirror dev	ice (DMD), light						

detectors, grating light valve (GLV), optical switch, wave guide and	
tuning, shear stress measurement.	
Unit – 4	
RADIO FREQUENCY (RF) MEMS: RF – based communication systems, RF MEMS, MEMS inductors, varactors, tuner/filter, resonator, clarification of tuner, filter, resonator, MEMS switches, phase shifter. MICRO FLUIDIC SYSTEMS: Applications, considerations on micro scale fluid, fluid actuation methods, dielectro phoresis (DEP), electro wetting, electro thermal flow, thermo capillary effect, electro osmosis flow, opto electro wetting (OEW), tuning using micro fluidics, typical micro fluidic channel, microfluid dispenser, micro needle, molecular gate, micro pumps.	10
Unit – 5	
CHEMICAL AND BIO MEDICAL MICRO SYSTEMS: Sensing mechanism & principle, membrane transducer materials, chemlab-on-a-chip (CLOC) chemo resistors, chemo capacitors, chemo transistors, electronic nose (Enose), mass sensitive chemo sensors, fluroscence detection, calorimetric spectroscopy.	10
Course outcomes:	
 Understand working principles of currently available micro s actuators, and motors, valves, pumps, and fluidics used in Microsyste choose a various Thermal & Magnetic Sensors and Actuators understand and analyse, linear and digital electronic circuits. Explain the RF MEMS & Different materials used for MEMS Demonstrate a detailed understanding of the fundamental princinanotechnology and their application to biomedical engineering. 	ensors, ems.
Text Books:	
1. MEMS, Nitaigour Premchand Mahalik, TMH Publishing co.	
 Reference Books: 1. Foundation of MEMS, Chang Liu, Prentice Hall Ltd. 2. Bio-MEMS (Micro systems), Gerald Urban, Springer. 3. MEMS and Micro Systems: Design and Manufacture, Tai-Ran Hsu Publishers. 	ı, TMH
Question paper pattern:	no The
 Question paper contains to Questions, 2 from each course outcom student must answer 5 full questions by selecting one question fro course outcome (Internal Choice) CO1- CO5 questions carries 14 marks each. Each full question will have a sub question covering all topics under a outcome. 	m each

CO/PO	PO 1	PO 2	PO 3	PO 4	РО 5	РО 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	2		2	2	3							2		
2	2		2	2	3							2		
3	2		2	2	3							2		
4	2		2	2	3							2		
5	2		2	2	3							2		
Course	2		2	2	3							2		

Course Outcomes to Program Outcomes mapping:

PRODUCT DESIGN AND DEVELOPMENT										
SEM	IESTER - VII	T / 137 1	20							
Subject Code	21MEMEP701E	Internal Marks	30							
Number of Lecture Hours/Week	3(L)	External Marks	70							
Total Number of Lecture Hours	50	Exam Hours	03							
Creaits – U3										
Course Objectives:										
The main learning objective of this course is to prepare the students for										
understanding the principles of product development process, customer										
development	, and prototyping id	or new product des	ign and							
			Uouro							
INTRODUCTION: A Generic Deve	Jonment Process	Adapting the	HOUIS							
Generic Product Development Proc	Development Frocess	- Adapting the								
Flows Digital tools for product des	vian Identifying C	Notomer Needo	10							
Product Specifications: Establishing	a Target Specificat	ions. Setting the								
Final Specifications	g larget opecificat	ions, octung the								
Init -2										
CONCEPT GENERATION: The Activ	ity of Concept Gen	eration - Concent								
Selection: Concept Screening: Con	cent Scoring – Co	oncent Testing –	10							
Concept innovation using TRIZ	copt beening of	sheepe resting								
Unit – 3										
PRODUCT ARCHITECTURE Im	plications of th	e Architecture:								
Establishing the Architecture;	Delaved Different	iation: Platform								
Planning; Related System-Level D	esign Issues – In	dustrial Design:	10							
Assessing the Need for Industrial D	esign; Impact of Ir	ndustrial Design;								
The Industrial Design Process; Ma	nagement of the I	ndustrial Design								
Process; Assessing the Quality of Ind	dustrial Design.	-								
Unit – 4										
DFM AND PROTOTYPING Design	for Manufacturir	ng: Estimate the								
Manufacturing Costs; Reduce the	Costs of Compone	ents; Reduce the								
Costs of Assembly; Reduce the Costs	of Supporting Proc	luction; Consider	10							
the Impact of DFMA– Prototyping: T	ype; Uses; Principl	es; Technologies;								
Planning for Prototypes.										
Unit – 5										
PRODUCT DEVELOPMENT ECO	NOMICS Element	ts of Economic								
Analysis; Economic Analysis I	Process – susta	inable product	10							
development: framework and met	rıcs – life cycle a	assessment of a								
product: stages and impact										
Course outcomes:	. 1 111 11	,								
On completion of this course, stude	nts should be able	to:	1							
1. Apply the principles of generic development process; conduct custom										
development	concation for ne	w product desig	gii allu							
Concerte solot sonoon and t	est concents for	now product dos	an and							
2. Generate, select, screen, and t	est concepts for 1	new product desi	gn and							

development.

- 3. Apply the principles of product architecture and industrial design to design and develop new products.
- 4. Apply the principles of DFMA and Prototyping to design and develop new product.
- 5. Apply the concepts of economics principles sustainable product development and life cycle assessment.

Text Books:

- 1. Jamnia, A., Introduction to Product Design and Development for Engineers, CRC Press, 2018.
- 2. Karl, T. Ulrich and Steven, D. Eppinger, "Product Design and Development", McGraw Hill, 2003.

Reference Books:

- 1. Belz A., 36-Hour Course: "Product Development" McGraw-Hill, 2010.
- 2. Chitale, A. K. and Gupta, R. C., Product Design and Manufacturing, PHI Learning, 2013.
- 3. Pugh S., "Total Design Integrated Methods for successful Product Engineering", Addison Wesley Publishing, 1991.
- 4. Rosenthal S., "Effective Product Design and Development", Business One, 1992.
- 5. Silva, A., Handbook of Research on Trends in Product Design and Development: Technological and Organizational Perspectives: Technological and Organizational Perspectives, IGI Global, 2010.
- 6. Devdas Shetty, "Product design for Engineers", Cengage Learning

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 14 marks each.
- 3. Each full question will have a sub question covering all topics under a course outcome.

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1			2			2				2	2	3	2	
2			2			2				2	2	3	2	
3			2			2				2	2	3	2	
4			2			1				2	2	3	2	
5			2			2				2	2	3	2	
Course			2			2				2	2	3	2	

REFRIGERATIO	ON & AIR CONDIT	rioning	
Serbiant Code	MESTER - VII	Internel Merles	20
Subject Code	ZIMEMEP702A	Internal Marks	30
Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
 Course Objectives: Enable the students to 1. To impart the basic concepts of 2. To develop a sound physical learner will demonstrate the conditioning equipment that me 3. Comparative study of different applications and Environment psychrometric charts. 4. Calculate cooling load for its conditioning. 5. Study of the various equipme controls employed in refrigeration Unit -1 Introduction to Refrigeration: N refrigeration and C.O.P., Mechan cycles of refrigeration; Air Refrigeration Air Refrigeration: Air Refrigeration - refrigeration systems used in air 	Refrigeration and understanding o e ability to desig eets the required s at refrigerants wit al issues, air co applications in nt-operating prince on air conditioning lecessity and appl ical refrigeration n Cycles-reversed eration systems-m crafts and problem	Air Conditioning. f the subject so the gn a refrigeration appecifications. th respect to proponditioning process comfort and induction ciples, operating and g systems. lications – unit of – types of ideal Carnot cycle, Bell- herits and demerits ms.	that the or air- perties, ses on strial air nd safety Hours 12
Vapour Compression Refrigerat essential components of the pl refrigeration cycle – COP – repre charts, effect of sub-cooling and s cycle influence of various paramet p-h charts – numerical problems. VCR System Components: Com Expansion devices–classification–v	ion (VCR): Worki ant, Simple vap sentation of cycle uperheating – cyc ers on system per pressors, Conden working principles	ing principle and our compression on T-S and p-h le analysis actual formance – use of nsers, Evaporators,	10
Unit – 3 Refrigerants – Desirable propertie – nomenclature – ozone depletion – Vapour Absorption Systems: Oth Vapour Absorption Refrigeration combinations, Water- Ammonia System, Contrast between the two	s – classification - –global warming. her types of Refrig Systems, Absorb Systems, Water- systems, Modified	refrigerants used geration systems – bent – Refrigerant Lithium Bromide l Version of Aqua-	10

Ammonia System with Rectifier and Analyser Assembly.	
Unit – 4	
Psychrometry: Introduction to Psychrometry, Psychrometric Properties & Processes, Air-water vapour mixtures, Psychrometric Chart. Numerical problems Load calculations : Concepts of RSHF, GSHF & ERSHF-ADP temperature, problems	10
Unit – 5 Introduction to Air conditioning Classification Applications of Air	
Conditioning, Requirements of human comfort and concept of effective temperature- comfort chart – comfort air conditioning – need for ventilation and consideration of infiltrated air- requirements of industrial air-conditioning. Air conditioning equipment : Cooling, heating, humidification and dehumidification, filters, grills and registers fans and blowers. heat pump – heat sources	8
Course outcomes:	
 On completion of this course, students should be able to: 1. Determine the COP for Bell-Coleman cycle and various types of refrigeration system. 2. Calculate the COP of the VCR cycle and indicate on T-S and P-H dia 3. Select the suitable refrigerant for the refrigeration system as requirements, various vapour absorption refrigeration systems at conventional refrigeration systems. 4. Analyze the cooling load and heating load using the print Psychrometry 5. Decide suitable components for the air condition system as per n compare the heat pump circuits 	aircraft grams. per the nd non- ciple of eed and
 A Course in Refrigeration and Air conditioning / SC Arora & Domkundwar/Dhanpatrai Refrigeration and Air Conditioning / CP Arora / TMH. 	
 Reference Books: 1. Refrigeration and Air Conditioning / Manohar Prasad / New Age. 2. Principles of Refrigeration /Dossat / Pearson Education. 3. Refrigeration and Air-conditioning, Stoecker W.F., and Jones J.W., M - Hill, New Delhi 4. Refrigeration and Air-conditioning by R K Rajput 	c Graw
 Question paper pattern: 1. Question paper contains 10 Questions, 2 from each course outcome student must answer 5 full questions by selecting one question from course outcome (Internal Choice) 2. CO1- CO5 questions carries 14 marks each. 	me. The om each

3. Each full question will have a sub question covering all topics under a course outcome.

				<u>8</u>				- appr						
CO/PO	РО 1	PO 2	РО 3	РО 4	РО 5	РО 6	PO 7	РО 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	3	3											3	
2	3	3	2				1						3	
3	3	3	2										3	
4	3	3	2										3	
5	3	3	2										3	
Course	3	3	2				1						3	

SYNTHESIS AND CHARA	CTERIZATION OF	MATERIALS	
SEM	ESTER - VI		
Subject Code	21MEMEP702B	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
Cre	edits – 03		
Course Objectives:			
Enable the students to			
1. Students gains deeper knowled	lge and understan	iding about the sy	nthesis
of materials.	c ·	1	• 1
2. To understand the importa	nce of improver	nent of synthes	is and
Characterization of their materi	lais.	ionna far agala dar	anition
5. Understand the requirements	for suitable techn	iques ior each der	DOSITION
4 To understand various advat	nced characteriza	tion equipment i	used to
characterize different types of t	noteriols	uon equipment t	iscu io
5 Gain knowledge about the	mal testings an	d characterizatio	ons on
composite materials	mai testings an		011 011
Unit -1			Hours
Synthesis of nano materials: Gol	d. Silver. differen	t types of nano	
oxides. TiO2. ZnO by using se	ol-gel method.	Co-precipitation.	
Hydrothermal, Microwave, thermal	and bio synthesis	methods, Nano	10
tubes and Nano wires, Carbon na	no tubes, Graphe	ene preparation,	
powder syntheses, crystal growth teo	chniques, zone ref	ining, properties	
and applications.	-		
Unit -2			
Top down and bottom-up synthesis	s- Mechanical allog	ying, Mechanical	
ball-milling, Ion implantation, Inert	gas condensation	, Arc discharge,	10
RF-plasma arc technique, Laser abla	tion, Template as	sisted synthesis,	
Clusters, Colloids, Zeolites, Porous si	llicon		
Unit – 3			
Deposition techniques: Chemical	vapour depositio	n (CVD), Metal	
Organic chemical vapour deposition	(MOCVD)		
Epitaxial growth techniques: Mole	cular beam epita	xy, Atomic layer	10
deposition, Pulsed laser deposition,	Pulsed electrocher	nical deposition,	
Magnetron sputtering, Spin coatin	ng, Introduction	to Lithography	
Unit – 4 Dringinle, Theory, Weyling and An	nliestien. V. Derri	Diffusion Field	
Frinciple, Theory, working and Ap	plication; A-Ray	Dilifaction, Field	
Ellission Scanning Electron Microscopy	Mioroscony Scon	ning Tunnelling	10
Microscopy	microscopy, scall		
linit – 5			
Photoluminescence Spectroscony	Raman Spectr	OSCODY X-Ray	
Photoelectron Spectroscopy (XPS),	Thermal analysi	s – Differential	10

Scanning Calorimetry (DSC) – Thermo gravimetric Analysis (TGA)– Differential Thermal Analysis (DTA) – Dynamic Mechanical Analysis (DMA), Mechanical Testing- Nano Indentation -Vibrating Sample Magnetometer, Zeta Potential and Particle size measurement.

Course outcomes:

On completion of this course, students should be able to:

- 1. The students are expected to understand basic principles of the synthesis and characterization techniques presented in the course, specific usage, their advantages and limitations
- 2. To understand the role of Top down and bottom-up synthesis and their importance in materials property.
- 3. Students should be able to understand the requirements for suitable techniques for each deposition techniques used.
- 4. They should be able to operate the instruments based on the knowledge gained on various applications.

5. To analyze various thermal testings and mechanical nano Indentation

Text Books:

- 1. Nano material, A.K. Bandyopadyay, New age Publishers
- 2. Material science and Technology: A comprehensive treatment, Robert W.Cahn,
- 3. Engineering Mechanics of Composite Materials, Isaac and M Daniel, Oxford University Press

Reference Books:

- 1. Mechanics of Composite Materials R. M. Jones, McGraw Hill Company, New York, 1975.
- 2. Analysis of Laminated Composite Structures, L. R. Calcote/Van Nostrand Rainfold, New York 1969
- 3. Analysis and performance of fibre Composites, B. D. Agarwal and L. J. Broutman, Wiley

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 14 marks each.
- 3. Each full question will have a sub question covering all topics under a course outcome.

CO/PO	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	2		2	3		2				2			3	
2	2		2	3		2				2			3	
3	2		2	3		2				2			3	
4	2		2	3		2				2			3	
5	2		2	3		2				2			3	
Course	2		2	3		2				2			3	

Course Outcomes to Program Outcomes mapping:

SMART MANUFACTURING & IIOT SEMESTER - VII									
Subject Code	21MEMEP702C	Internal Marks	30						
Number of Lecture Hours/Week	3(L)	External Marks	70						
Total Number of Lecture Hours	50	Exam Hours	03						
C	redits – 03								
Course Objectives: Enable the students to 1. Learn different types of FMS lay 2. Gain the knowledge of Automate 3. Understanding the performance 4. Describe the Automated Assemb 5. Understanding the characteristic	outs ed Production Line of material handl oly Systems cs of IIoT	es ing and storage tech	niques						
Unit -1	turin a Suctor		nours						
Evolution of Manufacturing Syste Components, Merits, Demerits and Classification of FMS Layouts: Layouts and their Salient features robot center type etc.	ems, Definition, o Applications.	bjective and Need, l line, loop, ladder,	10						
Unit -2			<u> </u>						
Automated Production Lines: Fu work part transfer mechanisms, production line. Applications — Ma Considerations. Analysis of Trans internal parts storage, Transfer line	Indamentals- Syst Storage buffers, a achining systems afer lines — Tran es with internal st	tem configurations, and Control of the and System Design asfer lines with No orage buffers.	08						
Automated Material Handling: Al	stamated Cuided	Vabiala (ACV)							
Systems, Types and applications, V Management and Vehicle safety. Automated Storage Systems: Au (AS/RS) and Carousel Storage System	vehicle Guidance utomated Storage	/Retrieval Systems	10						
Unit – 4									
Automated Assembly Systems: S	System configurat	ions, Parts delivery							
at workstations, and applications systems-Parts Delivery System at W Machines, Single Station Assembly	, quantitative an Vorkstations, Mul Machines, Partia	alysis of assembly ti-Station Assembly l Automation.	12						
Unit – 5									
Introduction to IIoT: Character templates, Sensing, Actuation, Co Machine Communications, Diffe	istics of IIoT, lev mmunication Pro erence between	vels & deployment tocols, Machine-to- IIoT and M2M,	10						

Communication modules - RFID, Bluetooth, Wi-Fi, Zigbee.
Course outcomes: At the end of the course the student will be in a position to
1. Apply FMS with manufacturing systems including job- shop and mas
production systems.
2. Determine the basic components and their functions of automated production
lines.
3. Analyze materials handling and storage systems in manufacturing.
4. Differentiate various automated assembly systems.
5. Assess the characteristics of IIoT and analyze the difference between M2M an
IIoT.
TEXT BOOKS
1. Groover, M.P "Automation, Production Systems and Computer Integrate
Manufacturing 3rd Edition, Prentice Hall Inc., New Delhi, 2007.
2. William W Luggen, "Flexible Manufacturing Cells and System" Prentice Ha
of Inc New Jersey, 1991
3. A. Banga and V. Madisetti, Internet of Things, A hands-on approach, VPT, 1
REFRENCE BOOKS
1. Automation by Buckinghsm W. Haper& Row Publishers, New York, 1961
2. Reza A Maleki "Flexible Manufacturing system" Prentice Hall of Inc New
Jersey, 1991
3. S. Misra, C. Roy, and A. Mukherjee, Introduction to Industrial Internet of
Things and Industry 4.0, CRC Press, 2020.
Question paper pattern:
1. Question paper contains 10 Questions, 2 from each course outcome. The
student must answer 5 full questions by selecting one question from each cours
outcome (Internal Choice)
2. All questions carries 14 marks each
3. Each full question will have sub question covering all topics under a course
outcome

course o	utcon		<u>, , , , , , , , , , , , , , , , , , , </u>	gran			ics ii	happi	ug.					
CO/PO	PO	PO	PO	PO	PO	PO	PO 7	PO	PO	PO 10	PO	PO	PSO	PSO
	L	4	3	4	Э	O	1	ð	9	10	TT	14	T	4
1	3	1			3		2						3	
2	3	2	2		3		1						3	
3	3	1	2		3		2						3	
4	3	1	2		3		2						3	
5	3	2	2		3		2						3	
Course	3	2	2		3		2						3	

	Tribology		
SEI	MESTER - VII		
Subject Code	21MEMEP702D	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
C	redits – 03		
Course Objectives:			
Enable the students to			
1. 10 provide broad based under "	rization technique	e interdisciplinary	subject
2 To learn about the contact	of solid surface	s. As and their inte	ractions
consequences of wear, wear med	chanisms, wear th	eories and analysis	of wear
3. To understand the genesis of fri	ction, the theories	/laws of sliding and	d rolling
4 To learn about the principles of	f lubrication lubr	ication regimes the	ories of
hydrodynamic, elasto hydrodyna	amic and mixed/	boundary lubricatio	n
5. To learn about tribo testing an	nd experimental t	echniques in tribol	ogy and
tribological modelling and simul	lation		
6. To learn about tribology of differ	ent machine comp	oonents and emergin	ng areas
such as micro/nano tribology			
	1	C 1	Hours
Introduction: Nature of surfaces	s and contact-Si	urface topography-	
of fluid film formation Lubrication	n. Choice of lubri	cants types of oil	10
Grease and solid lubricants- addi	tives- lubrication	systems and their	
selection.		- <u>j</u>	
Unit -2			
Selection of rolling element beari	ngs: Nominal life,	static and dynamic	
capacity-Equivalent load, probabil	lities of survival-	cubic mean load-	08
bearing mounting details, pre	loading of bear	ings, conditioning	
monitoring using shock pulse meth	nod.		
Unit – 3			
Hydrostatic Bearings: Thrust bea	arings – pad coeff	icients- restriction-	10
optimum film thickness-journal be	arings – design pr	ocedure –Aerostatic	10
bearings; Thrust bearings and Jour	rnal bearings – de	sign procedure.	
Unit – 4			
Hydrodynamic bearings: Fundam	entals of fluid for	mation – Reynold's	
equation; Hydrodynamic journal	bearings – Son	nmerfield number-	
performance parameters – optim	num bearing wit	h maximum load	12
capacity - Friction - Heat generated	and Heat dissipa	drodynamic thrust	
bearings- fixed tilting pads. single	and multiple pad	bearings-optimum	

condition with largest minimum film thickness.

Unit – 5

Seals: different type-mechanical seals, lip seals, packed glands, soft piston seals, Mechanical piston rod packing, labyrinth seals and throttling bushes, oil flinger rings and drain grooves – selection of mechanical seals. Failure of Tribological components: Failure analysis of plain bearings, rolling bearings, gears and seals, wear analysis using soap and Ferro graphy. Dry rubbing Bearings: porous metal bearings and oscillatory journal bearings – qualitative approach only.

Course outcomes: At the end of the course the student will be in a position to:

- 1. Demonstrate basic understanding of friction, lubrication and wear recesses. Become familiar with mathematical tools used to analyze tribological processes.
- 2. Become familiar with rolling element bearings and the lubricants used therein.
- 3. Enhance students' awareness of tribological issues in the design of machine components, such as rolling element bearings, journal bearings, thrust bearings, seals and braking systems.
- 4. Describe the detailed operation of selected Hydrodynamic journal bearings
- 5. Exposed to design a tribological system for optimal performance.

TEXT BOOKS

- 1. Rowe WW& O' Dionoghue," Hydrostatic and Hybrid bearing design "Butter worths& Co.Publishers Ltd, 1983.
- 2. Collacott R.A," Mechanical Fault diagnosis and condition monitoring", Chapman and Hall, London 1977.
- 3. Bernard J.Hamrock, "Fundamentals of fluid film lubricant", McGraw-Hill Co.,1994.

4. Introduction to Tribology of bearings – B.C.Majumdar – S Chand Publishing. **REFRENCE BOOKS**

- 1. Neale MJ, (Editor) "Tribology hand Book" NeumannButterworths, 1975.
- 2. Connor and Boyd JJO (Editors) "Standard hand book of lubrication engineers" ASLE,Mc Graw Hill Book & Co.,1968
- 3. Shigley J, E Charles, "Mechanical Engineering Design", McGraw Hill Co., 1989

Question paper pattern:

1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)

2. All questions carries 14 marks each

3. Each full question will have sub question covering all topics under a course outcome

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	3	1			3		2						3	
2	3	2	2		3		1						3	
3	3	1	2		3		2						3	
4	3	1	2		3		2						3	
5	3	2	2		3		2						3	
Course	3	2	2		3		2						3	

Course Outcomes to Program Outcomes mapping:

Hydrogen & Fuel Cells SEMESTER - VII										
Subject Code	21MEMEP702E	Internal Marks	30							
Number of Lecture Hours/Week	3(L)	External Marks	70							
Total Number of Lecture Hours	50	Exam Hours	03							
C	redits – 03									
 Course Objectives: Enable the students to 1. To introduce to emerging technol Hydrogen 2. To impart knowledge on use of H and facilitate analysis of the cha Unit -1 Hydrogen Energy Economy: Hydr Present status and a vision – Ap application-cars, light trucks, bused and rate 	ologies like produc nydrogen for achie allenges in transiti rogen Energy Econ oplications of Hyd s - Stationary and	ction and storage of eving sustainable gro ion to hydrogen econ nomy – Conception, drogen - Transport Portable-Electronic	wth omy Hours 10							
gadgets.										
Unit -2 Hydrogen And Production Techniques: Hydrogen – Physical and chemical properties, salient characteristics - Production of hydrogen – Steam reforming – Water electrolysis – Gasification and woody biomass conversion – Biological hydrogen production – Photo dissociation – Direct thermal or catalytic splitting of water.										
Hydrogen Storage & Transpo Compressed gas – Liquid hydroge Comparisons - Transport of Hydro compound materials.	o rt: Hydrogen s en – Hydride – O ogen - Pipelines, g	storage options – Chemical Storage – gaseous, liquid and	10							
Unit – 4										
Fuel Cells: History – Principle - Wo of fuel cell process – Performance ev battery Vs fuel cell - Types of fue DMFC, PEMFC – Relative merits ar	rking - Thermodyn valuation of fuel co el cells – AFC, PA nd demerits.	namics and kinetics ell – Comparison on AFC, SOFC, MCFC,	12							
Unit – 5										
Application Of Fuel Cell: Fuel cell large scale power generation – A analysis of usage of Hydrogen in Fu Course outcomes: At the end of the 1. Gets exposure to different fuel c	l usage for domes utomobile - Spac uel cell - Future tr le course the stud ells in particularly	tic power systems - ce - Environmental rends in fuel cells. ent will be in a posit	10 ion to:							
 Gain an advanced understandin various types available and how Learn about Hydrogen storage 8 	ng of hydrogen, ele they work	ectrolysis and fuel ce	ll, the							

- 4. Explain the working of AFC, PAFC, SOFC, MCFC, DMFC, PEMFC type of Fuel cells
- 5. Understand the merits, demerits applications of Fuel cells

TEXT BOOKS

1. Hydrogen and Fuel Cells: A Comprehensive Guide, Rebecca L. and Busby, Penn Well Corporation, Oklahoma (2005)

REFRENCE BOOKS

- 1. Hydrogen and Fuel Cells: Emerging Technologies and Applications, Bent Sorensen (Sørensen), Elsevier, UK (2005)
- 2. Fuel Cell and Their Applications, Kordesch, K and G.Simader, Wiley-Vch, Germany (1996).
- 3. Fuel Cells: Theory and Application, Hart, A.B and G.J.Womack, Prentice Hall, NewYork Ltd., London (1989)
- 4. The Hydrogen Economy, Jeremy Rifkin, Penguin Group, USA (2002).
- 5. Fuel Cells Principles and Applications, Viswanathan, B and M Aulice Scibioh, Universities Press (2006)

Question paper pattern:

1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)

2. All questions carries 14 marks each

3. Each full question will have sub question covering all topics under a course outcome

	PO	PSO	PSO											
C0/F0	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3				3		2				2	2	3	
2	3		2		3		1				1	1	3	
3	3		2		3		2				2	2	3	
4	3		2		3		2				2	2	3	
5	3		2		3		2				2	2	3	
Course	3		2		3		2				2	2	3	

SOLAR ENERGY ENG	INEERING AND A	PPLICATIONS	
SE	MESTER - VII		
Subject Code	21MEMEP703A	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Course Objectives:			
Enable the students to			
1. To understand the basics of the	Solar Radiation.		
2. To understand the concept of Pl	hoto Voltaics.		
3. To understand the Solar Cell Te	chnologies.		
4. To understand thin film technol	logies.		
5. To understand the methods of s	olar energy collec	tions.	-
Unit -1			Hours
Solar Radiation: Solar energy opti	on, solar power, s	tructure of the sun,	
the solar constant, sun-earth relat	tionships, solar ra	diation types, solar	10
radiation on titled surface, instru	ments for measur	ring solar radiation	
and sun shine. Solar Tracking Sys	tems – Single axis	– Dual axis	
Unit -2			1
Photovoltaic Fundamentals: Plac	e of PV in energy	supply – PV Cells -	•
Modules and arrays - Review of se	emiconductor phy	sics and operating	8
principle - Introduction to P-N ar	Id P-I-N junctions	s - Cell parameters	
limits-Losses in solar cells-Solar ce	ell design for high	lsc,, Voc and FF.	
	1, 1 1 '	/	
Solar Cell Technologies: Silicon b	ased technologies	(mono-crystalline,	10
poly-crystalline – ribbon - silicor	1 mm - Flow OI	silicon material -	12
Manufacturing processes (water, co	ell and module) for	r Mono and poly Si	
The training of the second sec			
Thin film technologies (Silicon	and Non ailigan);	Matarial dapasition	
techniques Amernhous Si colla /	and Non-Sinconj.	material-deposition	
film non silicon technologies vi	r Codmium tellu	ride Cu Indium	10
Gallium Diselenide	z Caulinum tenu		
Unit – 5			
SOLAR ENERGY COLLECTION	V Solar Flat 1	nlate collectors -	
Concentrating Collectors - Comp	ound Parabolic C	ollector - Collector	
Efficiency solar ponds solar	applications- sol	ar heating/cooling	10
technique, solar distillation and	drving, solar cool	kers, central power	
tower concept and solar chimney		power	
Course outcomes:			1
On the completion of this course.	students are able t	0	
1. Discuss the basics of the Solar	Radiation		
2. Describe the concept of Photo V	oltaics.		

- 3. Describe the Solar Cell Technologies
- 4. Differentiate Thin film technologies
- 5. Illustrate the methods of solar energy collections

Text Books:

- 1. Sukhatme S.P. and J.K.Nayak, *Solar Energy Principles of Thermal Collection and Storage*, TMH.
- 2. Khan B.H., Non-Conventional Energy Resources, Tata McGrawHill, New Delhi, 2006
- 3. Green Manufacturing Processes and Systems, Edited by J. PauloDavim, Springer 2013

References Books:

- 1. Principles of Solar Energy / Frank Krieth & John F Kreider.
- 2. Non-Conventional Energy / Ashok V Desai / Wiley Eas
- 3. Renewable Energy Technologies/ G.D Roy

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice).
- 2. All questions carries 14 marks each.
- 3. Each full question will have sub question covering all topics under a course outcome.

CO/PO	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	3	1		1			2						3	
2	3	2	2	1			1						3	
3	3	1	2	2			2						3	
4	3	1	2	2			2						3	
5	3	2	2	2			2						3	
Course	3	2	2	2			2						3	

ADDITIVE		NG	
Subject Code	21MEMEP703B	Internal Marks	30
Number of Lecture	2(1)	Eutomal Maria	70
Hours/Week	3(L)	External marks	70
Total Number of Lecture Hours	50	Exam Hours	03
(Credits – 03		
 Course Objectives: Enable the students to 1. To understand the fundamenta Rapid Prototyping) and its adva 2. To classify various types of Processes and know their work 3. To classify various types of Processes and know their work 4. To classify various types of F Processes and know their work 5. To have a holistic view of variou fields such as Mechanical, Bio- Unit -1 Introduction: Prototype, Roles of Prototype, Ne development, Need of Additive Mar Distinction between AM and CNC, in AM process, Advantages of AM, (SL), Materials, SL resin curin 	al concepts of Ade intages and limita Liquid Based Ray ing principle, adva Solid Based Ray ing principle, adva Powder Based Ra ing principle, adva s applications of the medical, Aerospace eed for time compositions fulfacturing (AM), of Classification of A Major Applications	ditive Manufacturing tions. pid Prototyping Sys antages, limitations e pid Prototyping Sys antages, limitations e pid Prototyping Sys antages, limitations e hese technologies in r ce, electronics etc. pression in product Generic AM process, AM Processes, Steps s. Stereolithography o-stereolithography,	(i.e. tems etc. tems etc. tems etc. relevant Hours
Processes.			
Unit -2			
Stereo lithography Apparatus process, working principle, phy layering technology, laser and lase and disadvantages, case studies. Solid Ground Curing (SGC) : M working principle, applications, a studies.	(SLA): models otopolymers, pho er scanning, appli Models and spec advantages and c	and specifications, oto polymerization, cations, advantages cifications, process, lisadvantages, case	10
Unit – 3			
Laminated object manufacturin process, working principle, applica case studies. Fused deposition modeling (FDW	g (LOM): Models ations, advantages	and specifications, and disadvantages,	10
working principle, applications, a	advantages and o	lisadvantages, case	

studies.	
Unit – 4	
 Selective laser sintering (SLS): Models and specifications, process, working principle, applications, advantages and disadvantages, case studies. 3-D Printing: Models and specifications, process, working principle, applications, advantages and disadvantages, case studies. 	10
Unit – 5	
 Engineering Applications of Additive Manufacturing: Analysis and planning, aerospace industry, automotive industry, jewelry industry, coin industry, GIS application, arts and architecture. RP Applications in Medical and Bioengineering: Planning and simulation of complex surgery, customized implants & prosthesis, design and production of medical devices, forensic science and anthropology, visualization of bimolecular. 	8
 Course outcomes: To study the working principles and process parameters of A Manufacturing processes To understand the liquid based Additive Manufacturing process para and application of these techniques To learn the solid based Additive Manufacturing process parameter application of these techniques To understand about the powder based Additive Manufacturing parameters and application of these techniques To study the application of these techniques To study the applications of Additive Manufacturing processes in fields 	Additive ameters ers and process various
 Rapid prototyping: Principles and Applications /Chua C.K., Leong K LIM C.S/World Scientific publications A Treatise on Additive manufacturing/ R B Choudary/ Khanna Publi 	.F. and shers
 Reference Books: 1. Rapid Manufacturing / D.T. Pham and S.S. Dimov/Springer 2. Wohlers Report 2000 /Terry T Wohlers/Wohlers Associates 3. Rapid Prototyping & Manufacturing / Paul F.Jacobs/ASME Press 	
 Question paper pattern: 1. Question paper contains 10 Questions, 2 from each course outcom student must answer 5 full questions by selecting one question fro course outcome (Internal Choice) 2. CO1- CO5 questions carries 14 marks each. 	ne. The m each

3. Each full question will have a sub question covering all topics under a course outcome.

	PO	PSO	PSO											
CO/PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2										2	2	2
2	1	2	2										1	2
3	1	2	1										2	
4	2	1											2	1
5	2	1											2	1
Course	2	2	2									2	2	2

PRODUCTION PLANN	ING AND CONTRO	OL		
SEMEST	SR - VII		- 1	20
Subject Code	21MEMEP703C	IA Mar	'KS	30
Number of Lecture Hours/Week	3(L)	Exam		70
	50	Marks		0.0
Total Number of Lecture Hours	50	Exam		03
Cre	dits – 03			
COURSE OBJECTIVES: Students should	be able to:			
1. Understand the concepts of production	n and service syst	ems	- 1:4 - 4:	- 9
2. Apply forecasting techniques for va	rious nrms, nan	nely qu		e os
quantitative methods to optimize/mai	te best use of rest	ources in	n acme	ving
2 Identify different strategies employ	od in manufacti	iring of	nd cor	77100
industries to plan inventory and It	nnart knowledge	on the	nu sei Motei	vice
Requirement Planning and Kanhan L	OR and IIT Metho	de de	Match	liais
4 Determine the exact routing and so	heduling which y	will he f	follower	d in
production And apply different schedu	iling policies in pl	anning a	and cor	ntrol
and make best use of resources	aning policies in pi			10101
5. Measure the effectiveness, identify like	celv areas for imr	provemen	nt. dev	elop
and implement improved planning a	nd control metho	ods for	produc	tion
systems.			P10440	
Unit -1			Но	urs
Introduction: Definition – objectives and	functions of produ	uction		
planning and control – elements of produ	action control – ty	pes of	TT	
production – organization of production	n planning and c	ontrol	Hours	5 - 08
department – internal organization of dep	oartment.			
Unit -2				
Forecasting – importance of forecasting	g – types of foreca	asting,		
their uses - general principles of for	recasting – forec	asting	Hours	s – 10
techniques – qualitative methods and qua	antitative methods	3.		
Unit – 3				
Inventory management – functions of	inventories – re	levant		
inventory costs - ABC analysis - VED a	nalysis – EOQ m	odel –		
Inventory control systems – P–Syst	tems and Q-Sy	stems	Hours	s – 10
Introduction to MRP I, MRP II, ERP, LO	B (Line of Balance	e), JIT		
and KANBAN system.				
Unit – 4				
Routing & Scheduling- definition - ro	uting procedure ·	-route		
sheets - bill of material - factors affect	ting routing proc	edure,		
schedule –definition – difference with load	ling, Scheduling p	olicies	Hours	s – 12
- techniques, standard scheduling me	ethods, line bala	ncing,		
aggregate planning.				
Unit-5				
Dispatching- activities of dispatcher - c	lispatching procee	lure –	Hours	s – 10

follow up – definition – reason for existence of functions – types of	
follow up, expediting, controlling aspects. Applications of	
computer in production planning and control.	
COURSE OUTCOMES	
On completion of this course, students will be able to:	

- 1. Illustrate the systems concept for the design of production and service systems.
- 2. Develop forecasts in the manufacturing and service sectors using selected quantitative and qualitative techniques
- 3. Discuss the importance and function of inventory and to be able to apply selected techniques for its control and management under dependent and independent demand circumstances.
- 4. Select and use an appropriate principles/methods/ techniques/ modern concept with reference to given application/situation in the preparation of route sheets with scheduling and loading in manufacturing systems.
- 5. Create and engage in life-long learning in the context of technological change in Operations Management and also able to identify dispatching, follow-up activities in the system

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 14 marks each.
- 3. Each full question will have a sub question covering all topics under a course outcome.

Text Books

- 1. Elements of Production Planning and Control / Samuel Eilon/Universal Book Corp.
- 2. Manufacturing, Planning and Control/PartikJonssonStig-Arne

Reference Books

- 1. Inventory Control Theory and Practice / Martin K. Starr and David W. Miller/Prentice-Hall
- 2. Production Planning and Control/Mukhopadyay/PHI
- 3. Production Control A Quantitative Approach / John E. Biegel/Prentice-Hall

Web references

- 1. http://nptel.ac.in/courses/112102106/
- 2. http://nptel.ac.in/courses/112107143/
- 3. http://nptel.ac.in/courses/112107142/33
- 4. http://nptel.ac.in/courses/112107142/31
- 5. https://nptel.ac.in/courses/112107142/36

CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1		2	1						1		1		1	
2		2	1								3		1	
3		2									3		2	
4			1	1	1		3						1	
5				1	1		3				2	2	1	
Course		1	1	1	1		3		1		2	1	2	

Course Outcomes to Program Outcomes mapping:

MACHINE TO	OL DESIGN			
SEMESTI	ER - VII		-	
Subject Code	21MEMEP703D	IA Ma	rks	30
Number of Lecture Hours/Week	3(L)	Exam		70
	=	Marks		0.0
Total Number of Lecture Hours	50	Exam		03
Cre	dits – 03			
 To learn and applications of the basic types of machine tools To grasp the knowledge of critical func of different types of machine tools To learn the knowledge of design of different reprint and operational reprint 	t be able to: es and working princtional and operat ferent types of ma	nciples ional re chine to	of diffe quirem ools to r	rent ents neet
Init -1			Чо	1170
Pagie features: Classification of machine	a taola Pasia fasta	roo of	по	uis
construction and fundamental kinematic purpose, special purpose machine too Automatic and N.C. machines. Mechanis rotary to linear motion: Mechanisms for i	mechanisms of g ols, transfer mac sms used for conv ntermittent motio	eneral hines, verting n.	Hours	s – 08
Unit -2				
speeds and feeds. Layout in G.P., A.P. a of speeds and feeds. Productivity loss. S lowest speeds, range ratio. Design of ray diagrams for machine tool gear boxes. clutched drives, support drive.	nd H.P, standardi Selection of highes diagram and stru Sliding, clustere	zation st and ctural d and	Hours	s – 10
Unit – 3				
Feed gear boxes: Norton and Meander speed, stepped and stepless regulation design analysis: Analysis of beds, frames structures. Methods to improve the rigid of Guide ways-overall compliance of a effects-functional accuracy of machine to	drives pre-select Strength, rigidit , columns. Materia lity of structures. machine tool. The ol.	ion of y and als for Types termal	Hours	s – 10
Unit – 4				
Spindle units: Spindle units of lather grinding machines, materials for spindles of clearance on the rigidity of spindle. Hydrolling bearings. Selection of bearings.	e, drilling, milling s. Spindle design. Irodynamic, hydro	g and Effect static,	Hours	s – 12
Unit-5				
Jigs & Fixtures: Principles of design of ji uses, classification of jigs & fixtures, prin	igs and fixtures an aciples of location	id and	Hours	s – 10

clamping, types of clamping & work holding devices, typical	
examples of jigs and fixtures.	

COURSE OUTCOMES

On completion of this course, students will be able to:

- 1. Understand the basic working principles of different machine tools with kinematic mechanisms.
- 2. Distinguish the functional and operational requirements of different machine tools
- 3. Design speed and feed gear boxes for a particular configuration.
- 4. Design machine tool structures for strength and rigidity
- 5. Understand various controls used in machine tools

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 14 marks each.
- 3. Each full question will have a sub question covering all topics under a course outcome.

Text Books

- 1. Sen G.S., & Battacharya, "Principles of Machine Tools", New Central Book Agency, Calcutta, 1986.
- 2. Machine Tool Design and Numerical Control/ NK Mehata / Tata MeGraw Hills, 2012

Reference Books

- 1. Basu S.K., "Design of Machine Tools", Allied Publishers, 1980.
- 2. Russe W. Henke, "Introduction to Fluid Power Circuits and Systems", Addison Wesley, 1970.
- 3. Metal Cutting and Tool Design Dr.B.J.Ranganath Vikas Publishing House Pvt. Ltd.- 2 nd Edition - 2018
- 4. A Textbook of Production Engineering P.C.Sharma- S.Chand Publishers.

	PO	PSO	PSO											
0,10	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		2	1						1		1	1	1	
2		2	1						1		3	1	1	
3		2	1								3	1	2	
4		1	1				3					1	2	
5		1	1				3				2	2	1	
Course		2	1				2		1		2	1	2	

COMPUTATIONAL FLUID DYNAMICS									
SEMESTER - VII									
Subject Code	21MEMEP703E	IA Marks	30						
Number of Lecture Hours/Week	3(L)	Exam Marks	70						
Total Number of Lecture Hours	50	Exam Hours	03						
Credits – 03									
COURSE OBJECTIVES: Students should be able to:									
• To study the basic governing equation of CFD.	s and understand	the basic pro	perties						
• To impart the knowledge of numerical	techniques to the	solution of flu	uid						
dynamics and heat transfer problems.									
• Specify need for implementation aspec	ets to finite differe	nce equations,							
consistency, explicit and implicit meth	nods.								
• Acquire knowledge of first order wave equation, stability of hyperbolic and									
elliptic equations.									
• Recognize finite volume method, linear	r interpolation and	d quadratic	_						
interpolation. Common matrix methods such as direct methods for matrix									
inversion and direct methods for banded matrices.									
Unit -1			Hours						
Number system and errors, represent	ation of integers	, fractions,							
floating point arithmetic, loss of signific	floating point arithmetic, loss of significance and error propagation,								
condition and instability, computational methods for error estimation,									
convergence of sequences. Solution of a system of simultaneous linear									
algebraic equations, iterative schemes of matrix inversion, direct									
methods for matrix inversion, direct metr	loas for banded m	latrices.							
Unit -2	- C								
conservation of mass, Newton's second la	w of motion, expa								
of navier-stokes equations, conservation of energy principle, special									
iorms of the Navier-stokes equations. Steady flow, dimensionless form									
of momentum and energy equations, stokes equation, conservative									
body force fields, stream function - vorticity formulation.									
Unit – 3									
Finite difference applications in heat cond	luction and conve	ntion – heat							
conduction, steady heat conduction i	in a rectangular	geometry,							
transient heat conduction, finite differen	transient heat conduction, finite difference application in convective								
heat transfer, closure. Finite differences, discretization, consistency,									
stability, and fundamentals of fluid flow modelling: introduction,									
elementary finite difference quotients, imp	plementation aspe	cts of finite-							
difference equations, consistency, explicit	t and implicit met	hods.							
Unit – 4									
Introduction to first order wave equation	n, stability of hvp	erbolic and	10						
elliptic equations, fundamentals of fluid	flow modelling, c	onservative	12						

property, the upwind scheme. **Unit-5** FINITE VOLUME METHOD: Approximation of surface integrals, volume integrals, interpolation and differentiation practices, upwind interpolation, linear interpolation and quadratic interpolation.

10

COURSE OUTCOMES

On completion of this course, students will be able to:

- 1. Understand and be able to numerically solve the governing equations for fluid flow and solve partial differential equations and analyze the behavior of them
- 2. Apply Numerical techniques and matrix methods to solve banded matrices
- 3. Apply finite difference techniques to solve the heat transfer and fluid flow energy equations
- 4. Evaluate fluid flow problem using various mathematical methods.
- 5. Investigate problems using finite volume methods.

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 14 marks each.
- 3. Each full question will have a sub question covering all topics under a course outcome.

Text Books

- 1. Numerical heat transfer and fluid flow / Suhas V. Patankar/Butter-worth Publishers
- 2. Computational fluid dynamics Basics with applications /John. D. Anderson / Mc Graw Hill.

Reference Books

- 1. Computational Fluid Flow and Heat Transfer/ Niyogi/Pearson Publications
- 2. Fundamentals of Computational Fluid Dynamics / Tapan K. Sengupta / Universities Press.
- 3. Computational fluid dynamics: An introduction, 3rd edition/John.F Wendt/Springer publishers

CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	3	1		2	2				1		1	3	1	
2	3	2		3	3				2		3	2	1	
3	3	2		2	2				2		3	2	2	
4	3	2		2	3				1			2	1	
5	3	1		2	3				1		2	2	1	
Course	3	2		2	3				1		2	2	2	
OPERA1	'IONS RESEARCH	I												
--	-----------------------	-------------------	---------	---------										
Subject Code	21MEMET7060	Internal Marks		30										
Number of Lecture Hours/Week	3(L)	External Marks	:	70										
Total Number of Lecture Hours	50	Exam Hours	•	03										
C	redits – 03	2		00										
Course Objectives:														
Enable the students to														
1. Understand the definition, scope	e, objectives, phas	ses, models and I	limita	tions										
of operations research and deve	loping the ability	y to formulate	the l	inear										
programming problems for minimiz	ing the project cos	st and maximizing	g its p	orofit.										
2. Solve linear programming probl	ems using variou	s techniques bas	sed of	n the										
constraints														
3. Understand about different ap	plication areas o	f operations res	earch	like										
transportation problem, assignmen	t model.													
4. Suggest optimal sequence and re	eplacement policy	to be maintained	l for t	better										
and economic growth of the industr	ry.	.												
5. Suggest optimal game strategies	s and estimation	of waiting times	ın wa	aiting										
line problems in the competitive bu	siness world.													
Unit -1	nate Definition D		Но	urs										
OP models Methodology Tools	Limitations and	annlications of												
Linear Programming	Limitations and	applications of	1	0										
Linear Programming.	iction Formulat	ion of Linear	-	.0										
Programming Problem (LPP)	Assumptions for	solving LPP												
Applications of LPP. Graphical met	hod of solving LPP	Solving Lif,												
Unit -2		•												
Linear Programming-II: Introduc	ction, steps in so	olving problems												
using simplex method, Principle	of simplex - Ma	ximization and												
minimization problems, solution b	y simplex method	l, limitations of	1	.0										
LPP simplex method. Dual simplex	method.													
Linear Programming-III: Artificial	variable concepts ·	- Big -M method												
and Two-phase method														
Unit – 3														
Transportation Problem: Basic	s, Basic Feasib	le Solution of												
Transportation problem with severa	al methods, perfor	ming optimality	_	-										
test, degeneracy in transportation j	problem.	, ,1 1 C	1	.0										
Assignment model: Definition, Fo	ormulation, Differ	ent methods of												
solutions, Hungarian assignment	method, unbalan	ced assignment												
Init – 4	101118.													
Sequencing problems: Introducti	on hasies turnes	of sequencing												
problems priority sequencing	equencing n-job	s through two	1	.0										
machines, n-jobs and m-machines.	two jobs 3-machi	nes case.												

Design and the last in the second s	
Replacement: Introduction – replacement of items that deteriorate	
with time – when money value is not counted and counted –	
replacement of items that fail completely, group replacement.	
Unit – 5	
Queuing Theory: Introduction, Queuing system, elements of	
Queuing system Operating characteristics of a Queuing system,	
Classification of queuing models: Model-I $[M/M/1: \infty / FIFO]$, Model-	10
III [M/M/1: N/FIFO].	10
Game Theory: Introduction, Two Person Zero sum games, Maximin	
- Minimax principle, Games without saddle points- mixed strategies,	
Graphical solution of 2Xn, mX2 games, and Dominance property	
Course outcomes:	
1 Formulate and solve mathematical model (linear programming pr	oblem) for
real situations like production and distribution of goods using by	obicilij ior
programming techniques li graphical methods	asic inicai
2 Apply the concents of linear programming for decision making lil	ze simplez
2. Apply the concepts of inteal programming for decision making in	xe simplex
and dual simplex algorithms in production industries.	ant mains
3. Calculate the optimal values of cost, job distribution and placen	lient using
transportation, assignment methods	1 · ·
4. Select the best optimal sequencing and replacement time for the m	achines in
an industry for its better and economic growth using sequer	ncing and
replacement techniques.	
5. Select the best optimal time and strategy to be followed by any orga	nization to
identify the waiting times and strategies to be implemented using wa	aiting lines
and game theory techniques for a continuous and successful gro	wth of an
industry.	
TEXT BOOKS:	
1. Operation Research / Premkumar Gupta, D.S.Hira / S.Chand	
2. Operations Research / S.D. Sharma-KedarnathRamnath (JNTU)	
REFERENCES:	
1. Operations Research / R. Pannerselvam / PHI Publications.	
2. Operation Research /J.K.Sharma/MacMilan.	
3. Operation Research An Introduction / Taha / Pearson	
4. Operations Research / A.M.Natarajan, P. Balasubramani, A. Ta	milarasi /
Pearson Education.	,
Ouestion paper pattern:	
1. Question paper contains 10 Questions, 2 from each course out	come. The
student must answer 5 full questions by selecting one question	from each
course outcome (Internal Choice)	
2 All questions carries 14 marks each	
3 Each full question will have sub question covering all tonics under	r a course
outcome	a course

CO/PO	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	3	3										3	3	3
2	3	3	2									3	3	3
3	3	3	2									3	3	3
4	3	3	2									3	3	3
5	3	3	2									3	3	3
Course	3	3	2									3	3	3

				M (ODEI Skill SE	LING Orien MEST	& AN ted C TER -	ALYS ourse VII	SIS e)						
Subject	Code	e					21N	/EME	CS707	0	IA I	Marl	٤S		15
Number	of L	ectur	e Ho	urs/V	Veek		0	1(L)+(02(P)		Exa	m N	Iarks		35
Total N	umbe	r of l	Lectu	re Ho	ours			39)		Exa	m H	Iours		03
						Cred	its –2								
Course	objec	tives	: Stu	dents	shou	ld be	able	to							
1. Know	v imp	ortan	ce an	d app	licati	ons o	f FEA	pack	age in	n inc	lust	ries			
2. Know	v tool	s usa	ge of a	simul	ation	Softw	vare f	or and	alyzin	ıg m	achi	ne c	compor	ien	ts
3. Analy	yze th	le 1D	struc	tural	analy	vses p	roble	ms							
4. Analy	yze th	le 2D	mach	nine c	ompo	nents	s by n	ieshir	ng						
5. Analy	yze th	e the	rmal	& mo	del ar	nalyse	es pro	blem	s						
INTROL	DUCT	ION													
Introduo	ction	to v	ariou	s Fir	nite E	Eleme	nt Ai	nalysi	is (FE	(A) 1	pack	age	s and	th	leir
importa	nce a	nd ap	plica	tions	in inc	lustri	es.								
STRUC	ГURA	L AN	D TH	ERM	AL AI	ALY	sis u	SING	FEA	Тос	b 1				
1. Analy	ysis o	f Bea	m hay	ving p	oint l	oad a	ind U	DL us	sing A	PDL					
2. Deter	rmina	tion (of def	lectio	n and	stres	sses in	n 2D a	and 3	D tr	usse	es.			
3. Linea	ar and	l Non	-Line	ar Bu	ckling	g Ana	lysis								
4. Deter	rmina	tion	of de	flectio	ons ir	i bea	ms co	ompo	nent	and	prii	ncip	al and	Vo	on-
mise	s stre	sses i	in pla	ne sti	ress, j	plane	strai	n and	l axi-s	symr	netr	ic co	ompon	ent	s.
5. Deter	rmina	ation (of stre	esses	1n 3D) and	shell	struc	tures	(at	leas	t on	e exam	ple	: 1N
each	case)	6		1 0											6
6. Estin	natioi	notr	atura	al free	quenc	ies ai	nd mo	ode s	hapes	з, На	armo	onic	respo	nse	: of
2D b	eam.	. 1		c	1	•	C 1		1		,				
7. Stead	iy sta	ite he	at tra	nster	analy	/S1S 01	t plan	e and	1 AX1-	sym	meti	<u>10 C</u>	ompon	ent	<u>:s.</u>
Course	outco	omes		n Cor	npleti	0n of	this c	cours	e, the	stu	dent	IS W1	II be a	ble	to:
1. Apply	y the	know	ledge	OI FE	A pac	ckage	ior in	idust	rial aj		catio	ns			
2. Reme	embei	r tools	s usag	ge of s	simul	ation	Softw	vare i	or ana	alyzi	ng n	nacr	nine		
comp		.lS		nrol-	100000	110:00-			a oft						
3.50176		suru(otural	1 000		using	, alla	uysis mobie	SUILW	are		n 0 1 	nia coff		ro
4. Analize 2D structural and axi-symmetric problems using analysis software															
	Jutes	mee	to D =				ng a	nnin	a. 12 201	iwal	C				
	PO	PO	PO	PO		PO		PO	5. PO	PO	PO	PO	PSO	P	so
CO/PO	1	2	3	4	5	6	7	8	9	10	11	12	1		2
1	3	3	2	2					-			2			3
2	2 3 3 2 2 2 2 3														
3	3	3	2	2								2			3

Course

SYLLABUS SITE-21 REGULATIONS

For OPEN ELECTIVE COURSES

Offered by Mechanical Engineering

S. No.	Subject Code	Name of the subject
1.	21XXMEOX0XA	Operations Research
2.	21XXMEOX0XB	Fundamentals of Mechanical Engineering
3.	21XXMEOX0XC	Industrial Robotics
4.	21XXMEOX0XD	Engineering Materials
5.	21XXMEOX0XE	Introduction to Material Handling
6.	21XXMEOX0XF	Production Planning and Control
7.	21XXMEOX0XG	Non-Conventional Sources of Energy
8.	21XXMEOX0XH	Fluid Mechanics and Fluid Machinery

OPEN ELECTIVE COURSES

		-	
OPERAI	MEGTED VV	L	
Subject Code	MESIER - AA	Testane al Maulas	20
Number of Lesture Hours (Wesh		Internal Marks	30
Number of Lecture Hours/ week	3(L)	External Marks	6 70
Total Number of Lecture Hours	JU Smodite 02	Exam Hours	03
Course Objectioner	reults - 03		
Enable the students to			
1 Understand the definition scon	e objectives phas	es models and 1	imitations
of operations research and deve	loning the shilits	τ to formulate	the linear
programming problems for minimiz	ing the project cos	t and maximizing	r its profit
2 Solve linear programming problem	lems using variou	s techniques bas	sed on the
constraints	terne denne tarred	s coomiques suc	
3. Understand about different ap	plication areas of	f operations res	earch like
transportation problem, assignmen	it model.	1	
4. Suggest optimal sequence and r	eplacement policy	to be maintained	for better
and economic growth of the indust	ry.		
5. Suggest optimal game strategie	s and estimation	of waiting times	in waiting
line problems in the competitive	business world.		
Unit -1			Hours
Introduction to Operations Resea	rch: Definition, Fe	eatures, types of	
OR models, Methodology, Tools,	Limitations and	applications of	
Linear Programming.			10
Linear Programming-I: Introdu	action, Formulati	ion of Linear	
Programming Problem (LPP), A	Assumptions for	solving LPP,	
Applications of LPP, Graphical met	hod of solving LPP	•	
Unit -2			
Linear Programming-II: Introduc	ction, steps in so	olving problems	
using simplex method, Principle	of simplex - Ma	ximization and	
minimization problems, solution b	y simplex method	l, limitations of	10
LPP simplex method. Dual simplex	method.		
Linear Programming-III: Artificial	variable concepts -	- Big -M method	
and Iwo-phase method			
Unit - 5 Transportation Broblem: Basic	- Basic Feasibl	le Solution of	
Transportation problem with sever	al methods perfor	ming optimality	
test degeneracy in transportation	aroblem	ming optimality	10
Assignment model: Definition F	ormulation. Differ	ent methods of	
solutions. Hungarian assignment	method. unbaland	ced assignment	
problems, travelling salesman prob	olems.		
Unit – 4	lems.		

Sequencing problems: Introduction, basics, types of sequencing problems, priority sequencing, sequencing n-jobs through two machines, n-jobs and m-machines, two jobs 3-machines case. Replacement: Introduction – replacement of items that deteriorate with time when money value is not counted and counted	10
replacement of items that fail completely group replacement	
Unit – 5	
Queuing inform: introduction, Queuing system, elements of Queuing system Operating characteristics of a Queuing system, Classification of queuing models: Model-I $[M/M/1: \infty / FIFO]$, Model-III $[M/M/1: N/FIFO]$.	10
Game Theory: Introduction, Two Person Zero sum games, Maximin	
- Minimax principle, Games without saddle points- mixed strategies,	
Graphical solution of 2Xn, mX2 games, and Dominance property	
Course outcomes:	
1. Formulate and solve mathematical model (linear programming pr real situations like production and distribution of goods using ba programming techniques li graphical methods	oblem) for asic linear
2. Apply the concepts of linear programming for decision making lik	te simplex
and dual simplex algorithms in production industries.	
3. Calculate the optimal values of cost, job distribution and placen	ient using
transportation, assignment methods	
4. Select the best optimal sequencing and replacement time for the m	achines in
an industry for its better and economic growth using sequer	ncing and
replacement techniques.	
5. Select the best optimal time and strategy to be followed	d by any
organization to identify the waiting times and strategies to be implement	nted using
waiting lines and game theory techniques for a continuous and success	stul growth
of an industry.	
TEXT BOOKS:	
1. Operation Research / Premkumar Gupta, D.S.Hira / S.Chand	
2. Operations Research / S.D. Sharma-KedarnathRamnath (JNTU)	
REFERENCES:	
1. Operations Research / R. Pannerselvam / PHI Publications.	
2. Operation Research /J.K.Sharma/MacMilan.	
3. Operation Research An Introduction / Taha / Pearson	
8. Operations Research / A.M.Natarajan, P. Balasubramani, A. Ta	milarasi /
Pearson Education.	
Question paper pattern:	
4. Question paper contains 10 Questions, 2 from each course out	come. The
student must answer 5 full questions by selecting one question	from each
course outcome (Internal Choice)	
5. All questions carries 14 marks each	
b. Each full question will have sub question covering all topics unde	r a course
outcome	

CO/PO	PO 1	PO 2	РО 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	3	3										3	3	3
2	3	3	2									3	3	3
3	3	3	2									3	3	3
4	3	3	2									3	3	3
5	3	3	2									3	3	3
Course	3	3	2									3	3	3

FUNDAMENTALS OF MECHANICAL ENGINEERING											
Subject Code											
Subject Code	21XXMEOX0XB	Internal Marks	30								
Number of Lecture Hours/Week	3(L)	External Marks	70								
Total Number of Lecture Hours	50	Exam Hours	03								
	Credits – 03										
Course Objectives:											
Enable the students to											
1. Understand the concepts of flu	uid properties like	e specific gravity,	viscosity,								
density, surface tension	1 1	1 0 57	57								
2. To study the classification of t	urbines and work	done and efficien	cy of the								
different turbines and also stud	y about draft tube	theory and to deter	mine the								
function efficiency.	•	C C									
3. To study about specific speed	and performance	characteristics of	different								
types of turbines.											
4. To study automobile engine w	orking, valve timi	ng and associated	systems								
such as lubricating system, coc	oling system, fuel f	eed system, ignitio	n system								
etc., their necessity, requireme	ents, construction	details, different t	ypes and								
their working											
5. To study the construction, work	ing principles and	advantages of belt	and rope								
drives, selection of belt drive- ty	pes of belt drives,	V-belts, types of c	oupling.								
Unit -1			Hours								
Fluid Mechanics: Dimensions an	d units: physical j	properties of fluids	-								
specific gravity, viscosity and its sig	gnificance, surface	tension, capillarity	[,] 10								
and vapor pressure. Atmospher	ric gauge and va	acuum pressure	_								
Measurement of pressure. Manor	neters- Piezomete	r, U-tube, inverte	d								
and differential manometers.											
Unit -2		1									
Impact of jets: hydrodynamic forc	e of jets on station	ary and moving flat	[,] 10								
inclined, and curved vanes, jet s	triking centrally a	and at tip, velocit	У								
diagrams, work done and efficiency	y, flow over radial	vanes.									
		· · · · · · · · · · · · · · · · · · ·									
Hydraulic Turbines and Governin	ig systems: Classi	incation of turbines	;								
Working principle, Efficiency calcu	lation and Design	principles for Pelto	n 10								
Wheel, Francis and for Kaplan	turbines; Gove	rning of turbines	;								
Performance and characteristic cu	rves.										
Unit – 4	in a nain sin los	laro and next time	~								
diagrama oir standard avalas	fuel injection	ave and port unin	Б								
ignition cooling and lubrication	Figure performan	stelli, carburetion	^{''} 10								
Snark Ignition and Combustic		ce evaluation.									
working principles Types of engine	ed in the second	$c_{\sigma} = c_{1assiii}c_{atioi}$	-,								
linit – 5											
Belt drives. Introduction Belt an	d rone drives sel	ection of helt drive	_ 10								
Lett unves. minouuchon, Delt an	a rope arrives, ser		10								

types of belt drives, V-belts, velocity ratio of belt drives, slip of belt, creep of belt, tensions for flat belt drive, angle of contact, centrifugal tension, maximum tension of belt,

Coupling: Brief introduction of coupling, Rigid couplings - muff, split muff and flange couplings, flexible couplings - flange coupling

Course outcomes:

- 1. Understand the concepts of fluid properties like specific gravity, viscosity, density, surface tension.
- 2. To study the classification of turbines and work done and efficiency of the different turbines and also study about draft tube theory and to determine the function efficiency.
- 3. This study is also used for the estimation of efficiency and performance of the turbine with the study of characteristics curves.
- 4. To study automobile engine working, valve timing and associated systems such as lubricating system, cooling system, fuel feed system, ignition system etc., their necessity, requirements, construction details, different types and their working
- 5. To study the construction, working principles and advantages of belt and rope drives, selection of belt drive- types of belt drives, V-belts, types of coupling.

TEXT BOOKS:

- 1. Basic Mechanical Engineering / Pravin Kumar/ Pearson
- 2. Thermal Engineering- R.S Khurmi/JS Gupta/S.Chand.
- 3. Introduction to Engineering Materials / B.K. Agrawal/ McGraw Hill

REFERENCES:

- 1. Fundamental of Mechanical Engineering/ G.S. Sawhney/PHI
- 2. Thermal Science and Engineering / Dr. D.S. Kumar/ Kataria

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

CO/PO	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO10	PO11	PO12	PSO1	PSO2
1	2	1	2									3	2	
2	2	2	3									2	2	
3	2	2	3									2	2	
4	3	3										2	2	
5	2	2	3	1								2		2
Course	2	2	3	1								2	2	2

INDUSTRIAL ROBOTICS SEMESTER - XX											
Subject Code	21XXMEOX0XC	Internal Marks	30								
Number of Lecture Hours/Week	3(L)	External Marks	70								
Total Number of Lecture Hours	50	Exam Hours	03								
C	Credits – 03										
 Course Objectives: Enable the students to Understand various applied coordinate system and contrest of composition of co	cations of robot ol systems nents of industrial sis with D-H nota r a manipulator by of actuators and is	ics and classifica l robotics. ation, forward and v avoiding obstacles mportance of appli	ation of inverse cation of								
Unit -1			Hours								
Introduction: Automation and Ro overview of Robotics –present and coordinate system and control syst	botics, CAD/CAM future application cem.	and Robotics – Ar s – classification by	n 7 8								
Unit -2											
Components of the Industrial representation of robot arms, co Architecture, number of degrees challenges of end effectors, de comparison of Electric, Hydraulic devices.	Robotics: Fund mmon types of a s of freedom – etermination of and Pneumatic t	ction line diagram arms. Components Requirements and the end effectors types of locomotion									
Unit – 3											
Motion Analysis: Homogeneous rotation and translation – problems Manipulator Kinematics: Specific coordinates and world coordinate problems.	transformations s. ations of matrices s Forward and in	as applicable to , D-H notation join averse kinematics -	t 10								
Unit – 4											
Trajectory Planning: General cor	nsiderations in pa	th description and	12								

generation. Trajectory planning and avoidance of obstacles, path planning, Skew motion, joint integrated motion –straight line motion – Robot programming, languages and software packages-description of paths with a robot programming language.

Unit – 5

Robot Actuators and Feed Back Components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors. Feedback components: position sensors– potentiometers, resolvers, encoders – Velocity sensors. **Robot Applications in Manufacturing:** Material Transfer - Material handling, loading and unloading- Processing - spot and continuous arc welding & spray painting - Assembly and Inspection.

Course outcomes:

1. Understand various applications of robotics and classification of coordinate system and control systems

12

- 2. Build the concepts of components of industrial robotics.
- 3. Apply kinematic analysis with D-H notation, forward and inverse kinematics
- 4. Generate trajectory planning for a manipulator by avoiding obstacles.
- 5. Understand different types of actuators and various applications of robots in manufacturing

TEXT BOOKS:

- 1. Industrial Robotics / Groover M P / Mc Graw Hill
- 2. Introduction to Robotics / John J. Craig/ Pearson
- 3. Robotics and Control/Mittal R K & Nagrath I J/ TMH.

REFERENCES:

- 1. Introduction to Robotics/ Saeed B Niku / Wiely Publications.
- 2. Robotics/ Fu K S/ Mc Graw Hill.

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

CO/PO	PO 1	PO 2	РО 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	2	2	3		3								2	
2	3	3	3										2	
3	3	3	2		3								2	
4	3	2	2		3								2	
5	2	2	3		3								2	
Course	3	3	3		3								2	

Course Outcomes to Program Outcomes mapping:

ENGINEERING MATERIALS											
S	EMESTER XX										
Subject Code	21XXMEOX0XD	Internal Marks	30								
Number of Lecture	03	External Marks	70								
Hours/Week		DATCHIAI MAINS	10								
Total Number of Lecture Hours	50	Exam Hours	03								
	Credits - 03										
Course objectives:											
This course will enable students to:											
1. Classify different bonds in s	solids and unders	stand crystallization	of the								
metals, for the formation of th	e solid solutions a	nd compounds.									
2. Understand different phase di	agrams.	1 1									
3. Recognize the property require	rements of a given	application and su	iggest a								
4 Illustrate the property require	us metal and men	alloys.	allagoat								
4. Industrate the property require	lements of a give	in application and	suggest								
5 Identify the property require	ments of a given	application and su	agest a								
suitable ceramic composite m	aterials	application and se	iggest a								
Unit -1			Hours								
Structure of Metals and Const	itution of allovs:	Bonds in Solids -									
Metallic bond - crystallization of	metals, grain and	l grain boundaries.									
effect of grain boundaries on	the properties of	metal / alloys –									
determination of grain size. Necess	sity of alloying, type	es of solid solutions,									
Hume Rothery's rules, interm	ediate alloy pha	ses, and electron	10								
compounds. Tensile, compression	and torsion tests	; Young's modulus,									
relations between true and engine	ering stress-strain	curves, generalized									
Hooke's law, yielding and yield str	rength, ductility, re	esilience, toughness									
and elastic recovery.											
Unit -2											
Equilibrium Diagrams: Experim	nental methods	of construction of									
equilibrium diagrams, Isomorpou	is alloy systems,	equilibrium cooling									
and heating of alloys, lever ru	le, coring, miscib	ility gaps, eutectic									
systems, congruent melting inte	rmediate phases,	peritectic reaction.	8								
reactions phase rule relationshi	n botwoon oguilib	rium diagrama and									
properties of allows	p between equino	num diagrams and									
Init - 3											
Ferrous & non-ferrous metal	and their all	Structure and									
properties of white cast iron malle	able cast iron gree	v cast iron, spheroid									
graphite cast iron, allov cast irons	. Classification of s	steels, structure and									
properties of plain carbon steels	low allov steels.	Hadfield manganese	12								
steels, tool and die steels. Struct	ture and propertie	s of copper and its									
alloys, Aluminum and its alloys, T	itanium and its all	loys									
Unit – 4		*	•								

diagrams, tempering, hardenability, surface-hardening methods (carburizing, carbo-nitriding, cyaniding, induction hardening and flame hardening), age hardening treatment, and cryogenic treatment of alloys vacuum and plasma hardening Unit-5								
Unit-5								
Ceramic and composite materials: Crystalline ceramics, glasses, cermets, abrasive materials, nanomaterial's – definition, properties and applications of the above. Classification of composites, various methods of component manufacture of composites, particle – reinforced materials, fiber reinforced materials, metal ceramic mixtures, metal – matrix composites and C – C composites.								
Course outcomes:								
 On completion of the course, student will be able to Classify different bonds in solids and understand crystallization metals, for the formation of the solid solutions and compounds. Different phase diagrams and study of binary phase diagrams Recorgnize the property requirements of a given application and s suitable ferrous & nonferrous alloys Analyze the property requirements of a given application and s appropriate heat treatment Identified the property requirements of a given application and sug suitable ceramic, composite materials 	of the uggest uggest gest a							
Text Books:								
 Introduction to Physical Metallurgy - Sidney H. Avener - McGrawHill Essential of Materials science and engineering - Donald R.Askeland – Thomson 								
Reference Books:								
 Material Science and Metallurgy - V.D.Kodgire and S.V.Kodgire Materials Science and engineering - Callister & Baalasubrahmanyam Material Science for Engineering students - Fischer - Elsevier Publish Material science and Engineering - V. Rahghavan Introduction to Material Science and Engineering - Yip-Wah Chung C Press. 	ners. CRC							
6. Material Science and Metallurgy – A V K Suryanarayana – B S Publication	ations.							
Web Source References:								
1 https://www.jitm.ac.in/mmresearch								
2. http://nptel.ac.in/courses/113106032/3								
3. https://en.wikipedia.org/wiki/Materials_science								
Ouestion paper pattern:								
 Question paper contains 10 Questions, 2 from each course outcom student must answer 5 full questions by selecting one question from course outcome (Internal Choice) All questions carries 14 marks each 	.e. The n each							

3. Each full question will have sub question covering all topics under a course outcome

Course	Course Outcomes to Program Outcomes mapping:													
СО	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	PO10	PO11	PO12	PSO 1	PSO 2
1	2	1	2									1		
2	2	1	2									1		
3	2		2									2		
4	2		2									1		
5	2		2									2		
6	2		2									1		
Course	3	1	2									2		

INTRODUCTION	TO MATERIAL HANI	DLING		
SEN	MESTER - XX			20
Subject Code	21XXMEOX0XE	Internal Mar	ks	30
Number of Lecture Hours/Week	3(L)	External Mar	rks	70
Total Number of Lecture Hours	50	Exam Hours		03
C	redits – 03			
COURSE OBJECTIVES:				
To understand the electric	of motorial handling	a main ma a mat		
1. To understand the classification	of material handling	equipment.		_
2. To explain the usage of different	material nandling eq	uipinent in ina	usiry	/.
5. To know now to connect loading	stations to the difference	nt discharge co	nann	ons.
4. To explain the usage of craftes a	t manaraila at indu	trica		
5. To explain the usage of hoists a	nu monorans at muus	suries.	Ue	
Unit -1	arramentas of mastaria		по	urs
introduction to materials handling,	examples of materia	is equipment,		
examples of materials handling e	equipment, continuot	is conveying,	-	^
intermittent conveying, examples,	liiting, noisting, nan	aling of bulk	T	U
goods and piece goods, cranes and	conveyors, principles	of calculation		
of conveying equipment, cycle time	e, buik materials and			
angle of repose, example for a belt of	conveyor and a simple	e noist.		
Dalt commune constructional de	toila touching angle	idlama halt		
Belt conveyors, constructional de	tails, tougning angle	e, idlers, belt		
specifications, cnutes, skirt board	s, plougns, belt conv	reyor layouts,	1	0
beit trippers and typical examp	ples, roller conveyo	rs, overnead		
conveyors, apron conveyors, compo	te parts and operate	ational details		
and applications with typical layou	ls.			
Unit – 3 Unit motorials handling and star	mana I lait land anna	ant (mlatforma		
cheet industrial hand truste ask	fage: Utili load conce	pt (plationii		
bondling introduction only in	dustrial band true	, panet less	1	^
industrial trucks systemated mi	dustrial fianti truch	atorogo and	T	U
industrial trucks, automated gui	ueu venicies, Dasic	storage and		
equipment system, Automated stora	ige and retrieval syste	$\sin(AS/AS),$		
	ications.			
Cranes lib oronog lilzo well men	nted and travalling d	the stability		
crates of crates like wan mould	and bogous number of	stability		
in jih grange jih construction Harb	ulu bogeys, llulliber o	d lovel luffing	1	0
cranes, shipward contry cranes	our cranes, runnig ar			
Tinit _ 5				
Unic - J Hoists and monorails Dortal from	es and slewing rings	and bearings		
typical stability, calculations of por	tal cranes, types of he	bists	1	0

Course outcomes:

- 1. Classify the material handling equipment
- 2. Explain the usage of different material handling equipment in industry
- 3. Discuss how to connect loading stations to the different discharge conditions
- 4. Associate the usage of cranes at industries
- 5. Associate the usage of hoists and monorails at industries

TEXT BOOKS

- 1. Material handling handbook, 2nd edition, ASME, 1985
- 2. Automation production systems and computer integrated manufacturing, Mikell P Groover, Prentice Hall of India, 2002.
- 3. Plant Layout and Materials Handling, Dr R B Choudary and G R N Tagore, Khanna Publishers

REFERENCE BOOK

- 1. R.O. Bailey, "Bulk material handling by conveyor belt I and II" M.A. Al
- 2. Frutchbaum, "Bulk solids handling

Question paper pattern:

- 1. Question paper contains 12 Questions, 2 from each course outcome. The student must answer 6 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 12 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

Course														
со	РО 1	PO 2	РО 3	РО 4	РО 5	РО 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	1	1	3									1	3	
2	1	1	3									1	3	
3	1	2	3									2	3	
4	1	2	3									1	3	
5	1	2	3									2	3	
6	1	2	3									1	3	
Course	1	2	3									2	3	

PRODUCTION PLANNING AND CONTROL											
SEMESTER - XX											
Subject Code21XXMEOX0XFIA Marks30											
Number of Lecture Hours/Week	3(L)	Exam	70								
		Marks									
Total Number of Lecture Hours	50	Exam	03								
Credits – 03											

COURSE OBJECTIVES: Students should be able to:

4. Understand the concepts of production and service systems

- 5. Apply forecasting techniques for various firms, namely qualitative & quantitative methods to optimize/make best use of resources in achieving their objectives.
- 6. Identify different strategies employed in manufacturing and service industries to plan inventory and Impart knowledge on the Materials Requirement Planning and Kanban, LOB and JIT Methods.
- 7. Determine the exact routing and scheduling which will be followed in production. And apply different scheduling policies in planning and control and make best use of resources.
- 8. Measure the effectiveness, identify likely areas for improvement, develop and implement improved planning and control methods for production systems.

Unit -1	Teaching Hours						
Introduction : Definition – objectives and functions of production							
planning and control – elements of production control – types of	$\mathbf{u}_{01\mathbf{rs}} = 08$						
production – organization of production planning and control	nouis – 08						
department – internal organization of department.							
Unit -2							
Forecasting – importance of forecasting – types of forecasting,							
their uses – general principles of forecasting – forecasting	Hours – 10						
techniques – qualitative methods and quantitative methods.							
Unit – 3							
Inventory management – functions of inventories – relevant							
inventory costs - ABC analysis - VED analysis - EOQ model -							
Inventory control systems - P-Systems and Q-Systems	Hours – 10						
Introduction to MRP I, MRP II, ERP, LOB (Line of Balance), JIT							
and KANBAN system.							
Unit – 4							
Routing & Scheduling- definition - routing procedure -route							
sheets - bill of material - factors affecting routing procedure,	Hours 10						
schedule –definition – difference with loading, Scheduling policies	Hours = 12						
- techniques, standard scheduling methods, line balancing,							

aggregate planning.											
Unit-5											
Dispatching – activities of dispatcher – dispatching procedure – follow up – definition – reason for existence of functions – types of follow up, expediting, controlling aspects. Applications of computer in production planning and control.	Hours – 10										
COURSE OUTCOMES											
On completion of this course, students will be able to:											
1. Illustrate the systems concept for the design of production and service systems.											
2. Develop forecasts in the manufacturing and service sectors using selected quantitative and qualitative techniques											
 Discuss the importance and function of inventory and to be able to apply selected techniques for its control and management under dependent and independent demand circumstances. 											
 Select and use an appropriate principles/methods/ techniques/ modern concept with reference to given application/situation in the preparation of route sheets with scheduling and loading in manufacturing systems. 											
5. Create and engage in life-long learning in the context of technological change in Operations Management and also able to identify dispatching, follow-up activities in the system											
Question paper pattern:											
1. Question paper contains 10 Questions, 2 from each course student must answer 5 full questions by selecting one quest course outcome (Internal Choice)	outcome. The ion from each										
2. CO1- CO5 questions carries 14 marks each.											
3. Each full question will have a sub question covering all topics u	inder a course										
outcome.											
Text Books											
1. Elements of Production Planning and Control / Samuel Eilon/ Book Corp.	Universal										
2. Manufacturing, Planning and Control/PartikJonssonStig-Arne											
Reference Books											
1. Inventory Control Theory and Practice / Martin K. Starr and Da Miller/Prentice-Hall	avid W.										
2. Production Planning and Control/Mukhopadyay/PHI											
3. Production Control A Quantitative Approach / John E. Biegel/J	Prentice-Hall										
Web references											
1. http://nptel.ac.in/courses/112102106/											
2. http://nptel.ac.in/courses/112107143/											
3. http://nptel.ac.in/courses/112107142/33											
4. http://nptel.ac.in/courses/112107142/31											
5. https://nptel.ac.in/courses/112107142/36											

CO /PO	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1		2	1						1		1		1	
2		2	1								3		1	
3		2									3		2	
4			1	1	1		3						1	
5				1	1		3				2	2	1	
Course		1	1	1	1		3		1		2	1	2	

NON-CONVENTIONAL SOURCES OF ENERGY									
SEN	MESTER-XX			•					
Subject code	21XXMEOX0XG	Internal ma	rks	30					
Number of lecture hours/Week	3(L)	External ma	ırks	70					
Total No of lecture hours	50	Exam hours		03					
С	redits-03								
 Course Objectives: Enable the students to: 1. Understand the principles and working of solar and solar energy collection. 2. Apply the principles of solar energy storage, applications in generation of electric power. 3. Apply the knowledge of Wind energy and Biomass, in generation of electric power production. 4. Apply the Principles and working of Geothermal energy power plant, OTEC plants, tidal, wave energy and Mini hydel power plants in generation of the electric power 5. Apply the principles of direct energy conversion systems like Thermoelectric generators, MHD generators and fuel cells, in generation of electric power 									
production									
Unit-1 Deinsintes of Oster Dedictions D	-1	- C	HO	ours					
 Principles of Solar Radiation: Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power - the solar constant, extra-terrestrial and terrestrial solar radiation, Solar radiation on titled surface, Instruments for measuring solar radiation and sun shine, solar radiation data. Solar Energy Collection: Flat plate and concentrating collectors, classification of concentrating collectors, advanced collectors. 									
Solar Energy Storage and App sensible, latent heat and stratified applications - solar heating/cooling and drying, photovoltaic energy con-		6							
Unit-3									
Wind Energy: Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria10Bio-Mass: Principles of Bio-Conversion, Anaerobic /aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of biogas, utilization for cooking, I.C. Engine operation, and economic aspects.10									
Unit-4									
Geothermal Energy: Resources, harnessing the energy, potential in Principles, utilization, setting of	types ot wells, India. Ocean Ene OTEC plants, the	methods of rgy – OTEC, rmodynamic	1	0					

oveles]								
Tidal and Wave energy: Potential and conversion techniques									
mini-hydel power plants, their economics.									
Unit-5									
Direct Energy Conversion: Need for DEC, Carnot cycle,									
limitations, Principles of DEC. Thermoelectric generators, Seebeck,									
Peltier and Joule Thompson effects, figure of merit, materials,									
applications, MHD generators, principles, dissociation and									
ionization, hall effect, magnetic flux, MHD accelerator, MHD engine,	16								
power generation systems, electron gas dynamic conversion,									
economic aspects. Fuel cells, principle, faraday's laws,									
thermodynamic aspects, selection of fuels and operating									
conditions.									
Course outcomes:									
1. The student understands the principles and working of solar and s collection.	solar energy								
2. The students apply the principles of solar energy storage, app	olications in								
power generation.									
3. The students Apply the knowledge of Wind energy and Biomass, in									
generation of power									
4. The students Apply the Principles and working of Geothermal energy power									
plant, OTEC plants, tidal, wave energy and Mini hydel power plants in									
generation of the electric power.									
5. Apply the principles of direct energy conversion systems like The	rmoelectric								
generators, MHD generators and fuel cells, in generation of electr	nc power.								
1 Denemohie Energy Descurres (Timeri and Chasel (Nerges									
1. Renewable Energy Resources / Tiwari and Gilosai / Narosa	20								
2. Non- conventional Energy Sources / G.D. Kai/ Khanna Publisher 3. Biological Energy Pescurces / Malcolm Eleischer & Chris Lowis / J	S F&FN Spop								
Beference books.	Eddrin Spoll								
1 Renewable Energy Sources / Twidell& Weir									
2. Solar Power Engineering / B.S. Magal Frank Kreith& J.F. Kreith									
3. Principles of Solar Energy / Frank Krieth& John F Kreider									
4. Non-Conventional Energy / Ashok V Desai / Wiley Eastern									
Question paper pattern:									
1. Question paper contains 10 questions,2 from each course outcon	nes, the								
student must answer 5 full questions by selecting one question fi	rom each								
course outcome (Internal choice)									
2. All question carries 14 marks each									
3. Each full question will have sub question covering all topics under	er a course								
outcome									

СО	PO	PSO	PSO											
/PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2			2	2					3	3	
2	3	3	2			2	2					3	3	
3	3	3	2			2	2					3	3	
4	3	3	2			2	2					3	3	
5	3	3	2			2	2					3	3	
Course	3	3	2			2	2					3	3	

Course Outcomes to Program Outcomes mapping:

FLUID MECHANICS AND FLUID MACHINERY SEMESTER -XX							
Subject Code	21XXMEOX0XH	Internal Marks	30				
Number of Lecture Hours/Week	3(L)	External Marks	70				
Total Number of Lecture Hours	50	Exam Hours	03				
	Credits – 03						
 Course Objectives: Enable the students to: 1. Understand the fundamental properties of fluid and calculate fluid pressure using the manometer. 2. Apply the differential conservation equations of mass, momentum, and energy to fluid flow problems. 3. Evaluate major and minor losses in pipes and also discuss boundary layer concepts. 4. Solve problems on the turbo machines like turbines using analytical method and velocity triangles. 5. Discuss the Classification and working principles of pumps and evaluate the performance of hydraulic machines 							
Unit -1			Hours				
Fluids: Definition of fluid, Fluid properties, Atmospheric gauge and vacuum pressure – measurement of pressure. Manometers-Piezometer, U-tube, inverted and differential manometers. Hydraulics: Pascal's law, hydrostatic law. Buoyancy, forces on submerged bodies, stability of floating bodies.							
Unit -2							
Fluid Kinematics: Introduction, flow types. Equation of continuity for one dimensional flow. Stream line, path line and streak lines and stream tube. Stream function and velocity potential function.10Fluid Dynamics:surface and body forces -Euler's and Bernoulli's equations for flow along a stream line, momentum equation and its applications, force on pipe bend.							
Unit – 3	Unit – 3						
Closed Conduit Flow: Reynol equation, Minor losses in pipes- p total energy line hydraulic gradien	d's experiment- D pipes in series and p t line.	arcy Weisbach ipes in parallel-	10				

	-
Basics of Turbo Machinery: Hydrodynamic force of jets on stationery and moving flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow over radial vanes.	
Unit – 4	
Turbines: Hydraulic Turbines: classification of turbines, Working and efficiencies of Pelton wheel, Francis and Kaplan turbines. Importance of Draft Tube. Hydraulic Quantities: Unit and specific quantities, characteristic curves, governing of turbines, selection of type of turbine, cavitation, surge tank, water hammer.	10
Unit – 5	
Pumps: Centrifugal Pumps: Classification, working, work done – manometric head losses and efficiencies- specific speed- pumps in series and parallel performance characteristic curves, cavitation & NPSH. Reciprocating Pumps: Working, Discharge, slip, indicator diagrams.	10
 Course outcomes: 1. Demonstrate various properties of fluids, pressure measurement develocities applications. 2. Identify the kinematics and dynamics properties of fluids flowing in conditions and its effects on the bodies. 3. Estimate the effect of various losses in fluids due to flowing and obstand understand using the concepts of pipe losses and Boundary layer to 4. Analyze the performance of hydraulic turbines, units and specific que based on the design by applying the knowledge of turbo-machiner analytical methods and velocity triangles. 5. Analyze the performance of various hydraulic pumps based on worked design. 	ices and different ructions heory. uantities ry using ings and
TEXT BOOKS 1. Hydraulics, fluid mechanics and Hydraulic machinery Modi and Seth 2. Fluid Mechanics and Hydraulic Machines/ RK Bansal/Laxmi Publica	n ations
REFERENCE BOOKS	

- 1. Fluid Mechanics and Hydraulic Machines by Rajput
- 2. Fluid Mechanics & Turbo machinery by Dixon, 7th Edn, Elesvier
- 3. Fluid Mechanics and Machinery by D. Rama Durgaiah, New Age International
- 4. Fluid Mechanics- Fundementals and Applications by Y.A. Cengel, J.M.Cimbala, 6th Edn, McGrawHill
- 5. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar, Kotaria& Sons.

Question paper pattern:

1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full

questions by selecting one question from each course outcome (Internal Choice)

2. All questions carries 14 marks each

3. Each full question will have sub question covering all topics under a course outcome

CO	PO	PO	PO	PO	PO	PO	PO 7	PO	PO	PO	PO	PO	PSO	PSO
/ FO	L	4	3	4	J	0	1	0	9	10	TT	14	1	4
1	3	3				3							3	
2	3	3				3							3	
3	3	3				2							3	
4	3	2				3							3	
5	3	3				3							3	
Course	3	3				3							3	

SYLLABUS SITE-21 REGULATIONS

For HONORS/MINOR COURSES

Offered by Mechanical Engineering

B. Tech (Mechanical Engineering)

Regulation SITE 21

IV- SEMSTER

HONORS/MINOR COURSES

Honors Courses

S.	Course Code	Course Title	Prerequisite
No.			
1		Advanced Strength of	. Machanica of Solida
1.	ZIMEMEH40IA	Materials	• Mechanics of Solids
2.	21MEMEH401B	Advanced Materials	Materials Engineering
2		Advanced Welding	Production
5.	ZIMEMEH401C	Technology	Technology
			• Thermodynamics
4.	21MEMEH401D	Waste to Energy	• Engineering
			Chemistry

Minor Courses

S.	Course Code	Course Title	Prerequisite
No.			
1.	21XXMEM401A	Engineering Mechanics	Engineering Physics
2.	21XXMEM401B	Thermodynamics	Engineering PhysicsEngineering Chemistry
3.	21XXMEM401C	Materials Engineering	Engineering PhysicsEngineering Chemistry
4.	21XXMEM401D	Production Technology	Engineering Physics

ADVANCED S	TRENGTH OF MA	TERIALS			
S	EMESTER - IV				
Subject Code	21MEMEH401A	Internal Marks	30		
Number of Lecture Hours/Week	3(L)	External Marks	70		
Total Number of Lecture Hours	50	Exam Hours	03		
	Credits – 04				
Course Objectives: Students sho	ould be able to				
1. Know the method of calculating	ng stress and stra	in in a member subj	ected to		
principal stress and strain and	l relation between	them.			
2. Understand the relation between	en elastic constan	ts and material symm	netry.		
3. Analyze the theories of failures	s and bending of b	eams			
4. Calculate the torsion of a circu	lar, elliptical, triar	ngular, rectangular b	ars, and		
Rolled sections.					
5. Calculate the stress energy sto	ored by using differ	rent energy methods.	-		
Unit -1			Hours		
Stress: derivation of Cauchy rela	ations and equilib	rium and symmetry			
equations, principal stresses and	directions.		10		
Strains: concept of strain. De	rivation of small	strain tensor and	10		
compatibility. strain theory, prince	ipal strains, strain	of a volume element,			
small displacement theory, Stress	-strain relations fo	or isotropic materials			
Unit -2					
Constitutive Equations: Generalized Hooke's law, linear elasticity,					
Material symmetry: Boundary value problems: Principal planes, cubic					
equations, the state of stress referred to principal axes, Plane stress and					
plane strain problems					
Unit – 3					
Theories of Failure: Significanc	e of the theories	of failure, Factor of			
safety in design, ideally plastic solid					
Bending of Beams: Straight beams and asymmetrical bending, Bending					
of curved beams					
Unit – 4					
Torsion & Axisymmetric Proble	ms: Torsion of gen	eral prismatic bars -			
solid sections, Torsion of circular	, elliptical, triang	ular and rectangular			
bars, Torsion of rolled sections	, Thick-walled cy	linder subjected to	10		
internal and external pressures -1	ame's-problems, S	Stresses in composite			
tubes, Thermal stresses.					
Unit – 5					
Energy Methods					
Solutions using potentials, Energy	gy methods, Work	done by forces and			
elastic strain energy stored, Maxw	vell-Betti-Rayleigh	Reciprocal theorem,	10		
Beggs Deformeter, First theorem of	of Castigliano, The	orem of virtual work,			
Kirchhoff's theorem.					
Course outcomes: Students will	be able to				

- 1. Learn the method of calculating stress and strain in a member subjected to principal stress and strain and relation between them.
- 2. Understand the relation between elastic constants and material symmetry.
- 3. Analyze the theories of failures and bending of beams
- 4. Calculate the torsion of a circular, elliptical, triangular, rectangular bars, and Rolled sections.
- 5. Calculate the stress energy stored by using different energy methods

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome.
- 2. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 3. All questions carries14 marks each
- 4. Each full question will have sub question covering all topics under a course outcome

Text Books:

- 1. Boresi & Sidebottom, Advanced Mechanics of Materials, Wiely International
- 2. L.S. Srinath, Advanced Mechanics of Solids, 3rd Edition, TMH, 2009

References:

- 1. Timoshenko, Theory of plates
- 2. B.C.Punmia, Strength of materials & Theory od Structures (V01 I & II)
- 3. Sadhu Singh, Strength of Materials

ADVANCED MATERIALS SEMESTER - IV							
Subject Code	21MEMEH401B	Internal Marks	30				
Number of Lecture Hours/Week	3(L)	External Marks	70				
Total Number of Lecture Hours	50	Exam Hours	03				
Credits – 04							

Course Objectives :

Enable the students to

- 1. Classify composites, introduce common types of fibers and matrices and applications of composites.
- 2. Underlying the applications of aerospace materials.
- 3. Illuminate the knowledge and analysis skills in applying hooke's laws in mechanics to the composite materials.
- 4. Understanding the key characteristics and applications of functionally graded materials, characteristics and applications of shape memory alloys.
- 5. Acquire different classes of nanomaterials that have been developed in recent years in light of various technological applications and properties.

Unit -1	Hours
Introduction to Composite Materials : Introduction, classification: polymer matrix composites, metal matrix composites, ceramic matrix composites, carbon–carbon composites, fiber reinforced composites and nature-made composites, and applications Reinforcements: Fibres- glass, silica, kevlar, carbon, boron, silicon carbide, and born carbide fibres.	10
Unit -2	
Aerospace Materials: Metallic materials- super alloys, Aluminium, Magnesium, titanium and Nickel based alloys and intermetallics, High temperature polymers, Materials for cryogenic application, Materials for space environment, Evaluation of materials for extreme environment, Materials processing and manufacturing in zero gravity.	10
Unit – 3	
Macro mechanical Analysis of a Lamina : Introduction, generalized Hooke's law, reduction of Hooke's law in three dimensions to two dimensions, relationship of compliance and stiffness matrix to engineering elastic constants of an orthotropic lamina, laminate- laminate code.	10
Unit – 4	
Functionally Graded Materials : Types of functionally graded materials- classification, different systems - preparation - properties and applications of functionally graded materials. Shape Memory Alloys: Introduction-shape memory effect-classification	10

of shap	e memory	alloys	composition-	properties	and	applications	of
shape 1	nemory allo	oys.					

Unit – 5

Nano Materials: Introduction-properties at nano scales-advantages & disadvantages applications in comparison with bulk materials (nano – structure, wires, tubes, composites). state of art nano advanced- topic delivered by student.

10

Course outcomes:

- 1. Identify, describe and evaluate the properties and applications of fibre reinforcements and types of composite materials.
- 2. Identify the aerospace materials and their applications
- 3. Ability to obtain lamina and laminate behavior by using hooke's law and relationship of compliance and stiffness matrix for composite materials
- 4. Demonstrate awareness of recent scientific and technological developments in the field of aerospace materials, and assess their potential to enhance the performance of aircraft in the near future for functionally graded materials, properties and applications on shape memory alloys.
- 5. Impart knowledge on different types of Nano materials.

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome.
- 2. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 3. All questions carries14 marks each
- 4. Each full question will have sub question covering all topics under a course outcome

Text Books:

- 1. Nano material, A.K. Bandyopadyay, New age Publishers
- 2. Material science and Technology: A comprehensive treatment, Robert W.Cahn, VCH
- 3. Engineering Mechanics of Composite Materials, Isaac and M Daniel, Oxford University Press

References Books:

- 1. Mechanics of Composite Materials R. M. Jones, McGraw Hill Company, New York, 1975.
- 2. Analysis of Laminated Composite Structures, L. R. Calcote/Van NostrandRainfold, New York 1969
- 3. Analysis and performance of fibre Composites, B. D. Agarwal and L. J. Broutman, Wiley

ADVANCED WELDING TECHNOLOGY					
Subject Code	SEMESTER - IV	Internal Marks	30		
Number of Lecture	21MEMEN401C	Internal Marks			
Hours/Week	3(L)	External Marks	70		
Total Number of	50	Exam Hours	03		
Lecture Hours	Credita 04				
Course Objectives	Credits – 04				
1. Study the different t fields	ypes of welding processes	and its application in	n various		
2. Design and fabricate	e welded joints using cold	metal transfer weldin	ıg		
process					
3. Employ appropriate	welding processes for mal	king welded joints wit	h		
different materials					
4. Analyze the welded j	oints fabricated through l	nybrid welding proces	ses		
5. Perform inction weld	ing processes for making	welded joints	Uours		
Introduction: Classifier	ation of welding processe	heat sources Wel	d Hours		
joint design - Weldabili Cold Metal Transfer v	ty of steels and other ma velding process, advanta	ages, limitations an	s. 10 d		
Init -2					
Classification of weldi	ng processes: TIG / A-T	IG Welding gas met	a1		
arc welding, Submerged arc welding, Plasma arc welding, das metal bonding, vacuum brazing, Explosive welding: Process description, process parameters, joint design, advantages and limitations					
applications.					
<u>Unit - 3</u>	1 D 11'	1 , 1' ', .'	10		
and applications, proces	Laser Beam welding, - a	dvantages, limitation	is 10		
Unit – 4			•		
Electron beam weldi	i ng : Electron beam we	elding, - advantage	s, 10		
limitations and applicat	ions, process variables an	d their effects.	10		
Unit – 5					
Friction stir welding : Fixture design, modifica welding, submerged frict variables, Surface modific composite by friction sti	Friction & Friction stir tion of tool and features, r tion stir welding. Friction s fication by friction stir pro r processing.	welding, tool design nodeling of friction st stir processing, Proces ocessing, Production o	n, ir ss 10 of		
Course outcomes:					
 Study the welded j process Select appropriate we 	oints fabricated through elding processes for maki	cold metal transfer	r welding different		

materials

- 3. Analyze the welded joints fabricated through Laser Beam welding processes
- 4. Analyze the welded joints fabricated through Electron Beam welding processes
- 5. Employ friction welding processes for repair and reclamation work

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome.
- 2. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 3. All questions carries14 marks each
- 4. Each full question will have sub question covering all topics under a course outcome

Text Books

- 1. Parmar R.S., "Welding Processes and Technology", Khanna Publishers, 2014.
- 2. Nadkarni S.V., 'Modern Arc Welding Technology', Oxford and IBH Publishing, 2015.

REFERENCE BOOKS

- 1. Lancaster J.F, 'The Physics of Welding', Pergamon Press, 1984
- 2. Weman K., "Welding Processes Hand Book", CRC Press, 2003.
- 3. Norrish J: Advanced Welding Processes, Woodhead publishing, 2006
| WASTE TO ENERGY | | | |
|---|------------------------------|-------------------------|-------------|
| Subject Code | SEMESTER - IV | Internal Marles | 20 |
| Number of Lecture | 21MEMEH401D | IIIterillar Marks | 30 |
| Hours /Week | 3(L) | External Marks | 70 |
| Total Number of | | | |
| Lecture Hours | 50 | Exam Hours | 03 |
| | Credits – 04 | II | |
| Course objectives: | | | |
| Enable the students to | | | |
| 1. Understand the differ | rent types of wastes. | | |
| 2. Understand various of | energy generation method | s. | |
| 3. Identify sources of en | nergy using bio-chemical o | conversion. | |
| 4. Apply the knowledge | of waste to energy for ext | raction of fuel from wa | aste. |
| 5. Analyse the environn | nental effect of waste to er | nergy conversion. | |
| Unit -1 | | | Hours |
| Characterization of was | tes, agricultural residues | and wastes includin | g |
| animal wastes; indust | rial wastes; municipal | solid wastes. Wast | e |
| processing types and | composition of variou | us types of wastes | ; 10 |
| Characterization of M | unicipal Solid Waste, I | Industrial waste and | d I |
| Biomedical Waste, w | aste collection and t | ransportation; wast | e |
| processing-size reduction | on, separation; waste m | anagement hierarchy | , |
| waste minimization and | recycling of Municipal so | lid waste. | |
| <u>Unit -2</u> | • • • ,• | 1 | c |
| Thermo chemical conv | ersion: incineration, pyr | olysis, gasilication of | I |
| waste using gasiliers, er | ivironmental and health in | mpacts of incineration | l; |
| strategies for reducing environmental impacts. Energy production from | | | |
| wastes through incineration, energy production through gasification of | | | 1 |
| wastes. Energy production through pyrolysis and gasification of Wastes, | | | , |
| Syligas utilization. | | | |
| Bio chemical Conversion | a: Apperabic digestion of | service and municipa | 1 |
| Wastes direct combust | on of MSW refuse derive | d solid fuel industric | 1 |
| waste agro residues an | aeropic digestion biogas n | roduction and presen | 1
1 |
| status of technologies for | r conversion of waste into | energy | .L |
| Design of waste to energy | w plants for cities small t | ownshins and villages | 12 |
| Energy production fro | m wastes through fer | mentation and tran | 9.
Q |
| esterification Cultivation | n of algal biomass from y | wastewater and energy | S
V |
| production from algae | Energy production from o | rganic wastes through | , |
| anaerobic digestion and | fermentation. | igame wastes throug. | |
| Unit – 4 | | | |
| Energy production fro | m waste plastics, gas | cleanup Waste, Hea | t |
| Recovery: Concept of c | onversion efficiency. ener | rgy waste, waste hea | t |
| recovery classification, a | dvantages and application | ns, commercially viabl | e 10 |
| waste heat recovery dev | ices. | | |

Unit – 5		
Environmental and health impacts-case studies: Environmental and		
health impacts of waste to energy conversion, case studies of commercial	8	
waste to energy plants, waste to energy- potentials and constraints in	0	
India, eco-technological alternatives for waste to energy conversions.		
Course outcomes:		
1. Understand the different types of waste.		
2. Understand various energy generation methods.		
3. Identify sources of energy from bio-chemical conversion.		
4. Apply the knowledge of waste to energy for extraction of fuel from waste	e.	
5. Analyse the environmental effect of waste to energy conversion.		
Question paper pattern:		
1. Question paper contains 10 Questions, 2 from each course outcome.		
2. The student must answer 5 full questions by selecting one question from each		
course outcome (Internal Choice)		
3. All questions carries14 marks each		
4. Each full question will have sub question covering all topics under a	course	
outcome		
TEXT BOOKS:		
1. P.A.Vesilind and W.A.Worrell (2016) Solid Waste Engineering, 2n	d Ed.,	
Cengage India.Chemicals and Power, John Wiley and Sons, USA.		
2. S. Capareda, (2013), Introduction to Biomass Energy Conversions, CRC	Press,	
USA.		
REFERENCE BOOKS:		

 K.J. Ptasinski, (2016). Efficiency of Biomass Energy: An Energy Approach to Biofuels, Power, and Biorefineries, John Wiley & Sons, USA.

MINOR O	COURSES under Mechan	ical Engineering	
ENGINEERING MECHANICS			
	SEMESTER - IV		
Subject Code	21XXMEM401A	Internal Marks	30
Number of Lecture	3(L)	External Marks	70
Hours/Week	0(2)		10
Total Number of	50	Exam Hours	03
Lecture Hours			
	Credits – 04		
Course Objectives			
Students should be able	e to:		
1. Gain knowledge on sy	stem of forces and mome	nts and describe the va	rious
types of friction			
2. Draw free-body diagra	ams and solve statics prot	olems	
3. Acquire knowledge on	centre of gravity and mor	ment of inertia for differ	ent
sections.		1 • ,•1•	
4. Calculate velocity and	acceleration of particles	having rectilinear or	
curvilinear motion.			
5. Analyze the problems	on work energy method a	ind impulse momentum	L
			TTours
Unit -1	ashanian Danis Company		Hours
Introduction to Engg. M	lener Concurrent Forces	s. Components in Space	
Systems of Forces: Cop	of Force and its Appli	- Components in Space	10
- Resultant - Moment of Force and its Application - Couples and			10
Resultant of Force Systems.			
Friction: Introduction, infiniting inclion and impending motion,			
IInit -2	iction, coefficient of metic		
Equilibrium of Systems	of Forces: Free Body D	jagrams Equations of	
Equilibrium of Conlanar	Systems Spatial Systems	s for concurrent forces	
LamisTheorm graphica	l method for the equilibri	um of conlanar forces	10
Converse of the law of T	riangle of forces convers	e of the law of polygon	10
of forces condition of e	nuilibrium analysis of pla	ane trusses (Method of	
ioints only)			
Unit – 3			
entroid and Centre of	Gravity: Centroid of sin	aple figures from first	1
principle, centroid of	composite sections: Cent	tre of Gravity and its	
implications.	I i i i i i i i i i i i i i i i i i i i		10
Area Moment of Inertia:	Definition, Moment of in	ertia of plane sections	
from first principles, Th	eorems of moment of iner	rtia, Moment of inertia	
of standard sections and	l composite sections.		
Unit – 4	•		
Kinematics: Rectilinear	and Curvilinear motions	– Velocity and	
Acceleration – Motion of	Rigid Bodies – Types and	their analysis in	10
Planar Motion.	_ •••	-	

Kinetics: Analysis of a Particle and Rigid Body in Translation– Central Force Motion – Equations of Plane Motion – Fixed Axis Rotation – Rolling Bodies.

Unit – 5

Work – Energy Method: Equations for Translation, Work-Energy Application to Particle Motion, Connected System - Fixed Axis Rotation and Plane Motion, Impulse momentum method.

Course outcomes:

- 1. Determine the resultant force and moment for a given system of forces and Apply laws of friction to simple mechanisms with consideration of friction
- 2. Draw free-body diagrams and solve statics problems
- 3. Determine centroid and moment of inertia of simple and composite bodies
- 4. Calculate the motion characteristics of a body subjected to a given force system
- 5. Solve the problems using work energy method and impulse-momentum method.

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome.
- 2. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 3. All questions carries14 marks each
- 4. Each full question will have sub question covering all topics under a course outcome

Text Books

- 1. Engineering Mechanics S.Timoshenko&D.H.Young., 4th Edn , Mc Graw Hill publications.
- 2. Engineering Mechanics-Statics and Dynamics by A Nelson, Tata McGraw Hill Education Private Ltd, New Delhi, 2009.

REFERENCE BOOKS

Engineering Mechanics statics and dynamics – R.C.Hibbeler, 11th Edn – Pearson Publ.

Engineering Mechanics, statics – J.L.Meriam, 6th Edn – Wiley India Pvt Ltd. Engineering Mechanics, statics and dynamics – I.H.Shames, – Pearson Publ. Mechanics For Engineers, statics - F.P.Beer&E.R.Johnston – 5th Edn Mc Graw Hill Publ.

Mechanics For Engineers, dynamics - F.P.Beer&E.R.Johnston –5th Edn Mc Graw Hill Publ.

Theory & Problems of engineering mechanics, statics & dynamics -

E.W.Nelson, C.L.Best& W.G. McLean, 5th Edn – Schaum's outline series - Mc Graw Hill Publ.

Singer's Engineering Mechanics: Statics And Dynamics, K. Vijay Kumar Reddy, J. Suresh Kumar, BS Publications

	THERMODYNAMICS SEMESTER - IV		
Subject Code	21XXMEM401B	IA Marks	30
Number of Lecture Hours/Week	3(L)	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits - 04		
COURSE OBJECTIVES: Enable the students to			

- 1. Gain the knowledge on the fundamentals of thermodynamics and temperature scales.
- 2. Apply First law of thermodynamics to various thermal engineering devices.
- 3. Understand the direction of second law of thermodynamics and concept of increase in entropy of universe.
- 4. Develop an idea on properties during various phases of pure substances using steam tables, Mollier chart and psychometric charts.
- 5. Acquire the knowledge of thermodynamics to air standard cycles, vapour power cycle and the properties of gas mixtures.

Unit -1	Teaching
	Hours
Introduction: Basic Concepts Fundamentals - System & Control volume; Property, State & Process; Exact & Inexact differentials; Work - Thermodynamic definition of work; examples; Displacement work; Path dependence of displacement work and illustrations for simple processes; various forms of work. Temperature, Definition of thermal equilibrium and Zeroth law; Temperature scales; Various Thermometers.	10
Unit -2	
First Law of Thermodynamics: Definition of heat; examples of heat/work interaction in systems- First Law for Cyclic & Non-cyclic processes; Concept of total energy-Demonstration as a property; Various modes of energy, Internal energy and Enthalpy. First Law for Flow Processes - Derivation of general energy equation for a control volume; Steady state steady flow processes including throttling; Examples of steady flow devices; Unsteady processes; examples of steady and unsteady, first law applications for system and control volume. Compressibility charts- Properties of two-phase systems.	10
Unit - 3	
Second law of Thermodynamics: Definitions of direct and reverse heat engines; Definitions of thermal efficiency and COP; Kelvin-Planck and Clausius statements; Definition of reversible process; Internal and external irreversibility; Carnot cycle;	12

Absolute temperature scale.	
Clausius inequality : Definition of entropy; Demonstration that	
Illustration of processes in T.S. coordinates.	
Industration of processes in 1-5 coordinates,	
events and Control volumes undergoing different processor	
Systems and Control volumes undergoing different processes,	
second law analysis for a control volume and energy balance	
Unit – 4	
Pure Substance : Definition of Pure substance Const.	
temperature and Const. pressure heating of water; Definitions of	
saturated states: P-v-T surface: Use of steam tables and R134a	
tables: Saturation tables: Superheated tables: Identification of	08
states & determination of properties, Mollier's chart.	
Determination of entropy from steam tables	
Unit-5	
Mixtures of Perfect Gases: Ideal Gases and ideal gas mixtures,	
Real gases and real gas mixtures and Basics of compressible	
flow.	
Thermodynamic Cycles: Otto, Diesel, Dual Combustion cycles,	
Sterling Cycle, Atkinson Cycle, Ericcson Cycle, Lenoir Cycle -	
Description and representation on P–V and T-S diagram,	10
Thermal Efficiency, Mean Effective Pressures on Air standard	
basis - comparison of Cycles. Brayton and Rankine cycles -	
Performance Evaluation-improving methods – combined cycles,	
Bell- Coleman Cycle, Vapour compression cycle-performance	
Evaluation.	
COURSE OUTCOMES: On completion of this course, students sh	nould be able
to:	
1. Identify type of thermodynamic systems in the energy perspec	tive.
2. Solve the practical thermodynamic problems by applying first	law and steady
flow energy equation.	
3. Analyze the problems on heat engines, refrigeration and entro	py by applying
direction of second law and illustrate the concept of entropy b	y using second
law of thermodynamics.	
4. Calculate the thermodynamic properties of the pure substanc	es.
5. Measure the performance of air standard cycles and vapor p	ower cycle and
analyze the properties of gas mixtures.	5
OUESTION PAPER PATTERN:	
1. Question paper contains 10 Ouestions, 2 from each course ou	itcome.
2. The student must answer 5 full questions by selecting one que	stion from each
course outcome (Internal Choice)	
3. CO1- CO5 questions carries 14 marks each	
4. Each full question will have sub question covering all topics	under a course
outcome.	

TEXT BOOKS:

- 1. Engineering Thermodynamics, PK Nag 4thEdn, TMH.
- 2. Fundamentals of Thermodynamics- Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J, 2003, 6th Edition, John Wiley and Sons.

REFERENCE BOOKS:

- 1. Engineering Thermodynamics Jones & Dugan PHI
- 2. Thermodynamics An Engineering Approach with student resources DVD Y.A.Cengel & M.A.Boles, 6thEdn McGraw Hill
- 3. Basic Engineering Thermodynamics A.Venkatesh Universities press.
- 4. An Introduction to Thermodynamics Y.V.C.Rao Universities press.
- 5. Engineering Thermodynamics P.Chattopadhyay Oxford Higher Edn Publ.
- 6. Engineering Thermodynamics D.P.Misra, CengagePubl.

MATERIALS ENGINEERING			
	SEMESTER - IV		I
Subject code	21XXMEM401C	Internal	30
Number of lecture	3(L)	External	70
hours/Week		Marks	
Total No Of lecture	50	Exam Hours	s 03
hours			
	Credits-04		
Course Objectives:			
Enable the students to			C . 1
1. Classify different bond	ls in solids and understan	d crystallization	of the metals
for the formation of th	e solid solutions and allo	y phases.	· · .
2. Understand about pha	se diagrams to identify the	e number and the	eir variations
of phases in Metallogr	aphic Structure.	1	1 /
3. Recognize the propert	y requirements of a give	n application ai	nd suggest a
suitable ierrous and n	in-ierrous metal and the	r alloys.	
4. Understand about var	ious neat treatment proc	esses and its mi	crostructure
F Understand the need	for different polymore	moming and agr	anasitas and
5. Understand the need	corring field	erannics and con	liposites and
Uleir uses in the engin	leering neid.		Uouro
Structure of motols	Pondo in Solido M	stallia hand	nours
crustallization of metals.	grain and grain bound	laries effect of	
grain boundaries on	the properties of met	$a = \frac{1}{2}$	
determination of grain si	re properties of meta	ai / alloys –	8
Constitution of allows: Necessity of allowing types of solid			0
solutions Hume Rothery's rules intermediate allow phases			
ductility resilience toughness and elastic recovery			
Unit-2		y	
Phase Diagrams: Met	hods of construction	of equilibrium	
diagrams. Isomorpous	allov systems, equilibriu	m cooling and	
heating of allovs, lever r	ule, eutectic systems, cor	aruent melting	
intermediate phases, pe	ritectic reaction Transfor	mations in the	10
solid state – allotropy, eu	tectoid, peritectoid reaction	ons, phase rule.	
relationship between ed	uilibrium diagrams and	l properties of	
allovs. Study of importar	t binary phase diagrams	of Fe-Fe ₃ C.	
Unit-3			
Cast Irons: Structure an	d properties of white cast	iron, malleable	
cast iron, grey cast iron	, spheroid graphite cast	iron, alloy cast	
irons.Non-ferrous meta	ls and alloys: Classifica	ation of steels,	
structure and properties	of plain carbon steels, l	ow alloy steels,	12
Hadfield manganese ste	els, tool and die steels.	Structure and	
properties of copper an	d its alloys, Aluminum	and its alloys,	
Titanium and its alloys			
Unit-4			

Heat Treatments: Annealing, normalizing, hardening, TTT diagrams, tempering, hardenability, surface-hardening methods (carburizing, carbo-nitriding, cyaniding, induction hardening and flame hardening), age hardening treatment, and cryogenic treatment of alloys. vacuum and plasma hardening.	10	
Ceramics Polymers and composites: Crystalline ceramics		
glasses, cermets, abrasive materials, nano materials –properties and applications. Classification, properties and applications of composites, Reinforced materials, fiber reinforced materials, metal ceramic mixtures, metal matrix composites. Structure, properties, and applications of polymers.	10	
Course outcomes:		
 Understand the basic crystal structures and their relationship properties Identify the phases, present in different alloy systems by analy phase diagrams Understand the structure and properties of cast iron and nonformetals and alloys Analyze various heat treatment process to change in physical protection metals Student is able to know the structure and properties of difference ceramic and composite materials Question paper pattern: Question paper contains 10 Questions, 2 from each course out The student must answer 5 full questions by selecting one question covering all topics un outcome 	with the rzing the errous properties in nt polymers, ccome. juestion from	
Tout healer		
 Introduction to Physical Metallurgy, Sidney H. Avener, McGraw Essential of Materials Science and Engineering, Donald R. Ask Thomson Materials Science and Metallurgy, R.B.Choudary, Khanna Publ 	vHill eland, lishers	
Keterence books:		
1. Material Science and Metallurgy – V.D.Kodgire and S.V.Kodgire, Everest		
 Materials Science and Engineering - Callister &Baalasubrahma publications Material Science for Engineering Students, Fischer, Elsevier Pu 	anyam, Willey Iblishers	

PRODUCTION TECHNOLOGY			
Subject Code	SEMESTER - IV	Internal Marles	20
Number of Lecture	ZIXXMEM401D		30
Hours/Week	3(L)	External Marks	70
Total Number of	50		0.0
Lecture Hours	50	Exam Hours	03
	Credits – 04		
COURSE OBJECTIVES	"		
Enable the students:			
1. To understand differ	ent casting techniques for	product development.	
2. To know about the a	pplications of special cast	ing processes	
3. To understand basic	manufacturing processes	of welding	
4. To understand the co	oncepts of advanced weld	ng processes for variou	S
applications.		f f	_
5. To select appropriate	metal forming and plasti	c working processes for	а
given application.			Hours
Introduction: Manufac	turing processes and class	sification	nouis
Costing: Stops involve	d in malting a costing	Dettorne and Dettorn	
making: Types of pat	terns Materials used	for patterns Pattern	
allowances Moulding se	and Molding sand compo	sition sand properties	10
and Sand preparation Core: Core sands Types of cores Core prints			
Chaplets. Principles of Gating, Gating ratio and Design of Gating			
systems.	5, 5	5 5	
Unit -2			
elting and Solidificatio	on of casting: Cupola fu	rnace, Solidification of	
pure metal and alloys,	Short & long freezing rang	ge alloys. Risers: Types	
function and design, C	asting designs.		10
pecial casting process	es: Centrifugal, Die and	d Investment casting.	
Casting defects-Causes	and remedies.		
Advanced Casting Tec	hniques: Stir Casting, Sq	ueeze casting	
Unit – 3			
elding: Introduction, cla	ssification of welding prod	cesses, types of welded	
joints and their charac	teristics. Gas welding: Di	ifferent types of flames	
and uses, Oxy-Acetyle	ne gas welding, metal are	c welding, sub merged	10
arc weiging.	MIC wolding Desistance	wolding: Spot wolding	
Seam welding Project	ion welding Upset wel	ding and Elash butt	
welding	don weiding, opset wei	ung, and mash bull	
Unit – 4			l
Special welding proces	ses: Thermit welding Fri	ction welding Friction	
stir welding. Electron be	eam welding, and Laser be	eam welding. Soldering	10
and Brazing, Welding de	efects, causes and remedi	es.	

Unit – 5

Metal Forming: Nature of plastic deformation, Hot and cold working. Rolling: Principle, Types of rolling mills and products, Forces in rolling and power requirements. Extrusion process, Hot extrusion and cold extrusion, Impact extrusion. Forging, Tools and dies, Forging hammers, Rotary forging. Wire and tube drawings.

10

Sheet metal forming: Blanking, Bending, Piercing, Stamping, Drawing, Coining, Embossing, Stretch forming, Hot and cold spinning. Blow and Injection moulding.

Course outcomes:

- 1. Students able to understand the knowledge of various casting processes
- 2. Students should be able to identify various casting technique parameters and their design effect on processes.
- 3. Students should be able to understand the equipment to complete specified welding processes efficiently and correctly
- 4. Students should be able to apply knowledge of welding safety standards to both field and factory environments.
- 5. Students should be able to understand the metal forming and sheet metal forming processes and their relevance in current manufacturing industry

Question paper pattern:

- 1. Question paper contains 10 Questions, 2 from each course outcome.
- 2. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 3. All questions carries 14 marks each
- 4. Each full question will have sub question covering all topics under a course outcome

TEXT BOOKS

- 1. P.N. Rao, Manufacturing Technology, Vol I, TMH
- 2. Kalpakjian S & Steven RSchmid, Manufacturing Processes for Engineering Materials, 5thEd.PearsonPubl.
- 3. B.S.Raghuwanshi, Workshop Technology, Vol I, Dhanpatrai& Co
- 4. Kalpakjain S.& Steven R Schmid, Manufacturing Engineering and Technology, 4th Ed., Pearson Publ.

REFERENCE BOOKS

- 1. P C Sharma, Production Technology, S. Chand
- 2. R.K. Jain and S.C. Gupta, Production Technology, Khanna Publishers
- 3. Production Technology, H.M.T. (Hindustan Machine Tools).